Skip to main content

Expose libpg_query PostgreSQL parser with Pythonic mood

Project description

author:

Lele Gaifax

contact:

lele@metapensiero.it

license:

GNU General Public License version 3 or later

This is a Python 3.6+ implementation of a wrapper to libpg_query, a C library that repackages the PostgreSQL languages parser as a standalone static library.

It is similar to the more mature psqlparse, but has different goals:

  • it targets only Python 3 (more precisely, only 3.6 or higher, mainly because I’m lazy and the enums extraction code uses the auto() helper of the standard library enum module)

  • it aims to target PostgreSQL 10 (in beta 2 as I’m writing this), taking advantage of a work-in-progress branch of the libpg_query library

  • it uses a more dynamic approach to represent the parse tree; this has a twofold advantage:

    1. it is much less boring to code, because there’s no need to write one Python class for each PostgreSQL node tag

    2. the representation is version agnostic, it can be adapted to newer/older Elephants in a snap

  • it allows to explore the parse tree in both directions, as each node carries a reference to the node from which it stems: this is the main reason I started this project, because while implementing the pretty printing feature for psqlparse I realized that some kinds of nodes require that knowledge to determine their textual representation

  • it does not introduce arbitrary renames of tags and attributes, so what you read in PostgreSQL documentation/sources[*] is available without the hassle of guessing how a symbol has been mapped

  • not very important, but I guess it is much more performant, as basically it does not duplicates the original parse tree into every instance

Introduction

At the lower level the module exposes two libpg_query functions, parse_sql() and parse_plpgsql(), that take respectively an SQL statement and a PLpgSQL statement and return a parse tree as a hierarchy of Python dictionaries, lists and scalar values. In some cases these scalars correspond to some C typedef enums, that are automatically extracted from the PostgreSQL headers and are available as pg_query.enums.

At a higher level that tree is represented by three Python classes, a Node that represents a single node, a List that wraps a sequence of nodes and a Scalar for plain values such a strings, integers, booleans or none.

Every node is identified by a tag, a string label that characterize its content that is exposed as a set of attributes as well as with a dictionary-like interface (technically they implements both a __getattr__ method and a __getitem__ method). When asked for an attribute, the node returns an instance of the base classes, i.e. another Node, or a List or a Scalar, depending on the data type of that item. When the node does not contain the requested attribute it returns a singleton Missing marker instance.

A List wraps a plain Python list and may contains a sequence of Node instances, or in some cases other sub-lists, that can be accessed with the usual syntax, or iterated.

Finally, a Scalar carries a single value of some type, accessible through its value attribute.

On top of that, the module implements two serializations, one that transforms a Node into a raw textual representation and another that returns a prettified representation. The latter is exposed by the __main__ entry point of the package, see below for an example.

Installation

Once this is released to PyPI, the following command will do:

$ pip install pg_query

Until then, you have to clone the repository:

$ git clone https://github.com/lelit/pg_query.git --recursive

and install from there:

$ pip install ./pg_query

Development

There is a set of makefiles implementing the most common operations, a make help will show a brief table of contents. A comprehensive test suite, based on pytest, covers 98% of the source lines.

Examples of usage

  • Parse an SQL statement and get its AST root node:

    >>> from pg_query import Node, parse_sql
    >>> root = Node(parse_sql('SELECT foo FROM bar'))
    >>> print(root)
    None=[1*{RawStmt}]
  • Recursively traverse the parse tree:

    >>> for node in root.traverse():
    ...   print(node)
    ...
    None[0]={RawStmt}
    stmt={SelectStmt}
    fromClause[0]={RangeVar}
    inh=<True>
    location=<16>
    relname=<'bar'>
    relpersistence=<'p'>
    op=<0>
    targetList[0]={ResTarget}
    location=<7>
    val={ColumnRef}
    fields[0]={String}
    str=<'foo'>
    location=<7>

    As you can see, the representation of each value is mnemonic: {some_tag} means a Node with tag some_tag, [X*{some_tag}] is a List containing X nodes of that particular kind[] and <value> is a Scalar.

  • Get a particular node:

    >>> from_clause = root[0].stmt.fromClause
    >>> print(from_clause)
    fromClause=[1*{RangeVar}]
  • Obtain some information about a node:

    >>> range_var = from_clause[0]
    >>> print(range_var.node_tag)
    RangeVar
    >>> print(range_var.attribute_names)
    dict_keys(['relname', 'inh', 'relpersistence', 'location'])
    >>> print(range_var.parent_node)
    stmt={SelectStmt}
  • Iterate over nodes:

    >>> for a in from_clause:
    ...     print(a)
    ...     for b in a:
    ...         print(b)
    ...
    fromClause[0]={RangeVar}
    inh=<True>
    location=<16>
    relname=<'bar'>
    relpersistence=<'p'>
  • Reformat a SQL statement[] from the command line:

    $ echo "select a,b,c from sometable" | python -m pg_query
    SELECT a
         , b
         , c
    FROM sometable
    
    $ echo 'update "table" set value=123 where value is null' | python -m pg_query
    UPDATE "table"
    SET value = 123
    WHERE value IS NULL

Changes

0.2 (2017-08-07)

  • Test coverage at 99%

  • First attempt at automatic wheel upload to PyPI, let’s see…

0.1 (2017-08-07)

  • First release (“Hi daddy!”, as my soul would tag it)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pg_query-0.2.tar.gz (1.4 MB view details)

Uploaded Source

File details

Details for the file pg_query-0.2.tar.gz.

File metadata

  • Download URL: pg_query-0.2.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pg_query-0.2.tar.gz
Algorithm Hash digest
SHA256 080ca8ecbfef1e9256dc3abd7d2c27f98824925c23eaae5eec7bcb710ddce9c0
MD5 479f3ca2de84112e44504898b86a1ca5
BLAKE2b-256 815c0064f57b9363d83a333663566befc50793616fcdee54e81a4ae89b42dfbf

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page