Skip to main content

Commandline tool to anonymize PostgreSQL databases

Project description

A commandline tool to anonymize PostgreSQL databases for DSGVO/GDPR purposes.

It uses a YAML file to define which tables and fields should be anonymized and provides various methods of anonymization. The tool requires a direct PostgreSQL connection to perform the anonymization.

PyPI - Python Version license pypi Download count build pganonymize

docs/_static/demo.gif

Features

  • Intentionally compatible with Python 2.7 (for old, productive platforms)

  • Anonymize PostgreSQL tables on data level entry with various providers (some examples in the table below)

  • Exclude data for anonymization depending on regular expressions or SQL WHERE clauses

  • Truncate entire tables for unwanted data

Field

Value

Provider

Output

first_name

John

choice

(Bob|Larry|Lisa)

title

Dr.

clear

street

Irving St

faker.street_name

Miller Station

password

dsf82hFxcM

mask

XXXXXXXXXX

credit_card

1234-567-890

partial_mask

1??????????0

email

jane.doe@example.com

md5

0cba00ca3da1b283a57287bcceb17e35

email

jane.doe@example.com

faker.unique.email

alex7@sample.com

phone_num

65923473

md5 as_number: True

3948293448

ip

157.50.1.20

set

127.0.0.1

uuid_col

00010203-0405-……

uuid4

f7c1bd87-4d….

  • Note: faker.unique.[provider] only supported on Python 3.6+ (Faker library min. supported python version)

  • Note: uuid4 - only for (native uuid4) columns

See the documentation for a more detailed description of the provided anonymization methods.

Installation

The default installation method is to use pip:

$ pip install pganonymize

Usage

usage: pganonymize [-h] [-v] [-l] [--schema SCHEMA] [--dbname DBNAME]
               [--user USER] [--password PASSWORD] [--host HOST]
               [--port PORT] [--dry-run] [--dump-file DUMP_FILE]

Anonymize data of a PostgreSQL database

optional arguments:
-h, --help            show this help message and exit
-v, --verbose         Increase verbosity
-l, --list-providers  Show a list of all available providers
--schema SCHEMA       A YAML schema file that contains the anonymization
                        rules
--dbname DBNAME       Name of the database
--user USER           Name of the database user
--password PASSWORD   Password for the database user
--host HOST           Database hostname
--port PORT           Port of the database
--dry-run             Don't commit changes made on the database
--dump-file DUMP_FILE
                        Create a database dump file with the given name
--init-sql INIT_SQL   SQL to run before starting anonymization

Despite the database connection values, you will have to define a YAML schema file, that includes all anonymization rules for that database. Take a look at the schema documentation or the YAML sample schema.

Example calls:

$ pganonymize --schema=myschema.yml \
    --dbname=test_database \
    --user=username \
    --password=mysecret \
    --host=db.host.example.com \
    -v

$ pganonymize --schema=myschema.yml \
    --dbname=test_database \
    --user=username \
    --password=mysecret \
    --host=db.host.example.com \
    --init-sql "set search_path to non_public_search_path; set work_mem to '1GB';" \
    -v

Database dump

With the --dump-file argument it is possible to create a dump file after anonymizing the database. Please note, that the pg_dump command from the postgresql-client-common library is necessary to create the dump file for the database, e.g. under Linux:

$ sudo apt-get install postgresql-client-common

Example call:

$ pganonymize --schema=myschema.yml \
    --dbname=test_database \
    --user=username \
    --password=mysecret \
    --host=db.host.example.com \
    --dump-file=/tmp/dump.gz \
    -v

Docker

If you want to run the anonymizer within a Docker container you first have to build the image:

$ docker build -t pganonymize .

After that you can pass a schema file to the container, using Docker volumes, and call the anonymizer:

$ docker run \
    -v <path to your schema>:/schema.yml \
    -it pganonymize \
    /usr/local/bin/pganonymize \
    --schema=/schema.yml \
    --dbname=<database> \
    --user=<user> \
    --password=<password> \
    --host=<host> \
    -v

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pganonymize-0.11.0.tar.gz (15.9 kB view details)

Uploaded Source

Built Distribution

pganonymize-0.11.0-py2.py3-none-any.whl (15.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pganonymize-0.11.0.tar.gz.

File metadata

  • Download URL: pganonymize-0.11.0.tar.gz
  • Upload date:
  • Size: 15.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for pganonymize-0.11.0.tar.gz
Algorithm Hash digest
SHA256 dcc03d1155b1d4d94acddc1933140a215c1f9b5d1d7f09ab05cb40060487cc03
MD5 df38f25d5c4920c5dc0cd45ad88f1a2a
BLAKE2b-256 06b4e032305679835467bfdf4888ed475c30fe259850e2a2186aa400a74a5b7b

See more details on using hashes here.

Provenance

File details

Details for the file pganonymize-0.11.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for pganonymize-0.11.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5be0c818fe66b1d96a3f680f7628b3a8841f53f664cb85597a88ca107d1c0f98
MD5 acfefade3d784660a3a124866798d7d4
BLAKE2b-256 4cac45037747033b0bfeb2d07ba1c8491329444bd300c630d69deb9fdde76e32

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page