Skip to main content

Postgresql shortcuts

Project description

# pgdata

Python PostgreSQL-PostGIS-SQLAlchemy shortcuts.

[![Build Status](]( [![Coverage Status](](

pgdata is a collection of convenience functions for working with PostgreSQL:

- provides an dictionary/JSON-like shortcut interface to database objects without dealing directly with an ORM or cursor (see [dataset](

>>> import pgdata
>>> db = pgdata.connect()
>>> db.tables
>>> db["inventory"].columns
['type', 'supplier', 'cost']

- provides a shortcut to `ogr2ogr` for quickly getting geographic data in and out of your database with sensible defaults and without resorting to shell scripting

>>> import pgdata
>>> db = pgdata.connect()
>>> db.ogr2pg('airports.shp',
>>> db.execute('do stuff')
>>> db.pg2ogr('SELECT * FROM airports_project.result','GPKG', 'output.gpkg')

Much is copied directly from [dataset]( and further inspiration was taken from [pgwrap]( See also [records]( and many others.

## Requirements

- PostgreSQL
- PostGIS
- GDAL (optional, for `pg2ogr` and `ogr2pg`)
- [ESRI File Geodatabase API]( (optional, for using `pg2ogr` with `FileGDB` option)

## Installation

pip install pgdata

## Configuration

Create an environment variable `DATABASE_URL` and set it to the [SQLAlchemy db url]( for your database:

MacOS/Linux etc:

`export DATABASE_URL=postgresql://postgres:postgres@localhost:5432/mydb`


`SET DATABASE_URL="postgresql://postgres:postgres@localhost:5432/mydb"`

## Usage

>>> import pgdata
>>> db = pgdata.connect(schema='myschema')
>>> db.tables
>>> db["inventory"].columns
['type', 'supplier', 'cost']
>>> data = db.query("SELECT * FROM inventory WHERE type = %s", ('spam',)).fetchall()
>>> for row in data:
>>> print (row['type'], row['supplier'], row['cost'])
('spam', 'spamcorp', 100)
>>> for row in db["inventory"].find(type='spam'):
>>> print (row['type'], row['supplier'], row['cost'])
('spam', 'spamcorp', 100)

## Paired with [`bcdata`](

Try some basic spatial analysis - how many airports are in the CRD?

import os

import bcdata
import pgdata

# define data to download
airports = 'bc-airports'
regdist = 'regional-districts-legally-defined-administrative-areas-of-bc'

# connect to default database, as defined by $DATABASE_URL
db = pgdata.connect()

# download and load to postgres
for url in [airports, regdist]:
# what are the official schema and table names of the data source?
info =
schema, table = (info['schema'], info['table'])

# grab default email address for DataBC downloads
email = os.environ['BCDATA_EMAIL']

# download the data and use pgdata's ogr2pg shortcut to load to postgres
# Note that we assume that the name of the layer in downloaded .gdb
# is 'schema_table'
dl =, email)
db.ogr2pg(dl, in_layer=schema+'_'+table, out_layer=table, schema=schema)

# define the query
sql = """SELECT COUNT(*)
FROM whse_imagery_and_base_maps.gsr_airports_svw a
INNER JOIN whse_legal_admin_boundaries.abms_regional_districts_sp rd
ON ST_Intersects(a.geom, rd.geom)
WHERE rd.admin_area_name = 'Capital Regional District'

# execute and print results


## bc2pg

The module includes `bc2pg`, a command line tool that operates as a shortcut for the `bcdata` operations above:

$ bc2pg --help
Usage: bc2pg [OPTIONS] DATASET

Mirror a DataBC Catalogue dataset in postgres

--email TEXT Email address. Default: $BCDATA_EMAIL
--db_url TEXT Target database Default: $DATABASE_URL
--help Show this message and exit.

To download bc-airports and load to postgres table `whse_imagery_and_base_maps.gsr_airports_svw`:

`$ bc2pg bc-airports`

Project details

Release history Release notifications

This version
History Node


History Node


History Node


History Node


History Node


History Node


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
pgdata-0.0.9-py2.py3-none-any.whl (17.7 kB) Copy SHA256 hash SHA256 Wheel py2.py3 Mar 15, 2018
pgdata-0.0.9.tar.gz (57.8 kB) Copy SHA256 hash SHA256 Source None Mar 15, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page