Python package implements the Group Additivity (GA) method for estimating thermodynamic properties
Project description
A Python package and database, developed by the Vlachos Research Group at the University of Delaware implements the First-Principles Semi-Empirical (FPSE) Group Additivity (GA) method for estimating thermodynamic properties of molecules. First introduced by Benson et al. for gas molecules and was later extended by Kua et al. to species adsorbed on catalytic surfaces. GA relies on graph theory defining each molecule as a collection of groups and their frequency of occurrence. The values of GA groups are determined from DFT-calculated thermodynamic properties of a (training) set of molecules by linear regression to minimize the difference of thermodynamic properties of molecules predicted by the GA from those estimated via DFT. This package implements four group additivity schemes in six databases (See below) and will convert a molecule entered as a Simplified Molecular-Input Line-Entry System (SMILES) providing the constituent groups, their frequency of occurrence, and estimated thermodynamic properties for that molecule. pgradd also provides a general GA framework for implementing a custom group additivity scheme from your ab initio data and regression to groups.
Benson’s gas molecule group additivity (BensonGA)
Salciccioli et al. (2012) adsorbate on Pt(111) group additivity scheme (SalciccioliGA2012)
Gu et al. (2017) solvated adsorbate on Pt(111) group additivity scheme (GuSolventGA2017Aq, GuSolventGA2017Vac)
Wittreich (2018) adsorbate on Pt(111). Subset of Gu et al. including only surface species, group values regressed with OLS/GLS (Maximum Likelihood) and DFT data processed with pmutt (GRWSurface2018)
Wittreich (2018) solvated adsorbate on Pt(111). Subset of Gu et al. including only surface species, group values regressed with OLS/GLS (Maximum Likelihood) and DFT data processed with pmutt (GRWAqueous2018)
Xie (2022) Database for hydrocarbon species on Ru(0001) (XieGA2022)
Citing this work
G.R. Wittreich, D.G. Vlachos, Python Group Additivity (pGrAdd) software for estimating species thermochemical properties Comput. Phys. Commun. 273 (2022) 108277 https://doi.org/10.1016/j.cpc.2021.108277
Developers
Gerhard R Wittreich, Ph.D., P.E.
Geun Ho Gu, Ph.D.
Michael Salciccioli, Ph.D.
Stephen M. Edie
Required Packages
Getting Started
Install using pip:
pip install --user pgradd
Run the unit tests. Navigate to the tests directory, input the command shown below, and look for an OK response. (Note: The number of tests/time may change with subsequent versions):
python -m unittest ........................................ ---------------------------------------------------------------------- Ran 40 tests in 7.849s OK
Look at examples below
License
This project is licensed under the MIT License - see the LICENSE file for details.
Contributing
If you have a suggestion or find a bug, please post to our Issues page with the or tag respectively.
Finally, if you would like to add to the body of code, please:
fork the development branch
make the desired changes
write the appropriate unit tests
submit a pull request.
Questions
If you are having issues, please post to our Issues page with the help wanted or question tag. We will do our best to assist.
Special Thanks
Dr. Jeffrey Frey (pip and conda compatibility)
Citations
Rangarajan et al. “Language-oriented rule-based reaction network generation and analysis: Algorithms of RING”, Comput. Chem. Eng. 2014, 64, 124. https://doi.org/10.1016/j.compchemeng.2014.02.007
Rangarajan et al. “Language-oriented rule-based reaction network generation and analysis: Descrpition of RING”, Comput. Chem. Eng. 2012, 45, 114. https://doi.org/10.1016/j.compchemeng.2012.06.008
Benson et al. “Additivity rules for the estimation of thermochemical properties.” Chem. Rev., 1969, 69 (3), 279-324
Salciccioli et al. “Density Functional Theory-Derived Group Additivity and Linear Scaling Methods for Prediction of Oxygenate Stability on Metal Catalysts: Adsorption of Open-Ring Alcohol and Polyol Dehydrogenation Intermediates on Pt-Based Metals.” J. Phys. Chem. C, 2010, 114 (47) 20155-20166. https://doi.org/10.1021/jp107836a
Kua J, Goddard WA (1998) Chemisorption of Organics on Platinum. 2. Chemisorption of C 2 H x and CH x on Pt(111). J Phys Chem B 102:9492–9500. https://doi.org/10.1021/jp982527s
Kua J, Faglioni F, Goddard WA (2000) Thermochemistry for hydrocarbon intermediates chemisorbed on metal surfaces: CH(n-m)(CH3)(m) with n = 1, 2, 3 and m ≤ n on Pt, Ir, Os, Pd, Rh, and Ru. J Am Chem Soc 122:2309–2321. https://doi.org/10.1021/ja993336l
Salciccioli et al. “Adsorption of Acid, Ester, and Ether Functional Groups on Pt: Fast Prediction of Thermochemical Properties of Adsorbed Oxygenates via DFT-Based Group Additivity Methods.” J. Phys. Chem. C, 2012, 116(2), 1873-1886. https://doi.org/10.1021/jp2091413
Vorotnikov et al. “Group Additivity for Estimating Thermochemical Properties of Furanic Compounds on Pd(111).” Ind. Eng. Chem. Res., 2014, 53 (30), 11929-11938. https://doi.org/10.1021/ie502049a
Vorotnikov et al. “Group Additivity and Modified Linear Scaling Relations for Estimating Surface Thermochemistry on Transition Metal Surfaces: Application to Furanics.” J. Phys. Chem. C, 2015, 119 (19), 10417-10426. https://doi.org/10.1021/acs.jpcc.5b01696
Gu et al. “Group Additivity for Thermochemical Property Estimation of Lignin Monomers on Pt(111).” J. Phys. Chem. C, 2016, 120 (34), 19234-19241. https://doi.org/10.1021/acs.jpcc.6b06430
Gu GH, Schweitzer B, Michel C, et al (2017) Group additivity for aqueous phase thermochemical properties of alcohols on Pt(111). J Phys Chem C 121:21510–21519. https://doi.org/10.1021/acs.jpcc.7b07340
Xie, T.; Wittreich, G. R.; Vlachos, D. G. Multiscale Modeling of Hydrogenolysis of Ethane and Propane on Ru(0001): Implications for Plastics Recycling. Appl. Catal. B Environ. 2022, 316 (June), 121597. https://doi.org/10.1016/j.apcatb.2022.121597
Examples
Benson’s Gas Group Additivity Example:
In: from pgradd.GroupAdd.Library import GroupLibrary import pgradd.ThermoChem lib = GroupLibrary.Load('BensonGA') descriptors = lib.GetDescriptors('C1CO1') print(descriptors) thermochem = lib.Estimate(descriptors,'thermochem') print(thermochem.get_HoRT(298.15)) Out: defaultdict(int, {'C(C)(H)2(O)': 2, 'O(C)2': 1, 'Oxirane': 1}) -21.09467743150278
Salciccioli et al. J. Phys. Chem. C, 2012, 116 (2), pp 1873-1886 Example:
In: from pgradd.GroupAdd.Library import GroupLibrary import pgradd.ThermoChem lib = GroupLibrary.Load('SalciccioliGA2012') descriptors = lib.GetDescriptors('C([Pt])C[Pt]') print(descriptors) thermochem = lib.Estimate(descriptors,'thermochem') print(thermochem.get_H(298.15, units='kcal/mol')) Out: defaultdict(<class 'int'>, {'C(C)(H)2(Pt)': 2, 'surface-ring strain': 0.217}) -11.307743997749277
Gu et al. J. Phys. Chem. C, 2017, 121 pp 21510–21519 Example:
In: from pgradd.GroupAdd.Library import GroupLibrary import pgradd.ThermoChem lib = GroupLibrary.Load('GuSolventGA2017Aq') descriptors = lib.GetDescriptors('C(=O)([Pt])O') print(descriptors) thermochem = lib.Estimate(descriptors,'thermochem') print(thermochem.get_HoRT(500)) Out: defaultdict(<class 'int'>, {'CO(O)(Pt)+O(CO)(H)': 1.0}) -109.86212002776878
Wittreich Surface Example:
In: from pgradd.GroupAdd.Library import GroupLibrary import pgradd.ThermoChem lib = GroupLibrary.Load('GRWSurface2018') descriptors = lib.GetDescriptors('[Pt]C([Pt])C([Pt])([Pt])C=O') print(descriptors) thermochem = lib.Estimate(descriptors,'thermochem') print(thermochem.get_HoRT(750), '[Dimensionless]') print(thermochem.get_H(750, 'kcal/mol'), '[kcal/mol]') Out: defaultdict(<class 'int'>, {'C(C)(H)(Pt)2': 1, 'C(C)(CO)(Pt)2': 1, 'CO(C)(H)': 1, 'CPt2CPt2': 1, 'CCPt2': 1, 'surface-ring strain': 0.392}) -13.423119203382337 [Dimensionless] -20.005853103142883 [kcal/mol]
Wittreich Solvated Surface Example:
In: from pgradd.GroupAdd.Library import GroupLibrary import pgradd.ThermoChem lib = GroupLibrary.Load('GRWAqueous2018') descriptors = lib.GetDescriptors('C(=O)([Pt])O') print(descriptors) thermochem = lib.Estimate(descriptors,'thermochem') print(thermochem.get_HoRT(500), '[Dimensionless]') print(thermochem.get_H(500, 'kJ/mol'), '[kJ/mol]') Out: defaultdict(<class 'int'>, {'CO(O)(Pt)+O(CO)(H)': 1.0}) -107.57909464133714 [Dimensionless] -447.23102885789655 [kJ/mol]
Xie Ru(0001) Surface Example 1:
In: from pgradd.GroupAdd.Library import GroupLibrary import pgradd.ThermoChem lib = GroupLibrary.Load('XieGA2022') descriptors = lib.GetDescriptors('[Ru]C([Ru])C([Ru])([Ru])C') print(descriptors) thermochem = lib.Estimate(descriptors,'thermochem') print(thermochem.get_HoRT(500), '[Dimensionless]') print(thermochem.get_H(500, 'kJ/mol'), '[kJ/mol]') Out: defaultdict(<class 'int'>, {'C(C)(H)(Ru)2': 1, 'C(C)2(Ru)2': 1, 'C(C)(H)3': 1, 'CRu2CRu2': 1}) -35.040312149773726 [Dimensionless] -145.6706333743726 [kJ/mol]
Xie Ru(0001) Surface Example 2:
In: from pgradd.GroupAdd.Library import GroupLibrary import pgradd.ThermoChem lib = GroupLibrary.Load('XieGA2022') descriptors = lib.GetDescriptors('CCC') print(descriptors) thermochem = lib.Estimate(descriptors,'thermochem') print(thermochem.get_HoRT(500), '[Dimensionless]') print(thermochem.get_H(500, 'kJ/mol'), '[kJ/mol]') Out: defaultdict(<class 'int'>, {'C(C)(H)3': 2, 'C(C)2(H)2': 1}) -41.49969417868688 [Dimensionless] -172.52376948049303 [kJ/mol]
Free Energy of Formation by including Entropy of the Elements:
In: from pgradd.GroupAdd.Library import GroupLibrary import pgradd.ThermoChem lib = GroupLibrary.Load('BensonGA') descriptors = lib.GetDescriptors('CCCCCC') print(descriptors) thermochem = lib.Estimate(descriptors,'thermochem') print(thermochem.get_GoRT(T=298.15, S_elements=True), '[Dimensionless]') print(thermochem.get_G(T=298.15, units='kJ/mol', S_elements=True), '[kJ/mol]') Out: defaultdict(<class 'int'>, {'C(C)(H)3': 2, 'C(C)2(H)2': 4}) -3.1192349163716244 [Dimensionless] -7.732446702038452 [kJ/mol]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pgradd-2.9.12.tar.gz
.
File metadata
- Download URL: pgradd-2.9.12.tar.gz
- Upload date:
- Size: 200.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a590c5239aadf5b75cae98ad6c0689e33c064f8a9225a562ccbe474efcd5b6b |
|
MD5 | 22debc1992c6af7ca04499b8f538b45e |
|
BLAKE2b-256 | a3aa8ca969867e58368ae453eaa0ed94b919bda96149af140543730ee1da792b |
File details
Details for the file pgradd-2.9.12-py3-none-any.whl
.
File metadata
- Download URL: pgradd-2.9.12-py3-none-any.whl
- Upload date:
- Size: 226.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f873135b0e64f597fc87f347bbd110b733c79ddd8d546b8cb023483c740f13bd |
|
MD5 | 02f4203bdb5d2d9de4f944eacfd74b16 |
|
BLAKE2b-256 | bc410a0d5296e9447299d7084e20c979e55e63036bf6454c1d5ebd615498ca86 |