Skip to main content

Phantom types for Python

Project description

phantom-types

Phantom types for Python.

This project is in early development and major changes to core APIs should be expected. Semantic versioning will be followed after version 1.0, but before that breaking changes will happen between minor versions.

Installation

python3 -m pip install phantom-types

Abstract

Usage

Shipped phantom types

Boolean

Describes objects that coerce to either True or False when calling bool() on them.

  • phantom.boolean.Truthy
  • phantom.boolean.Falsy

Datetime

  • phantom.datetime.TZAware
  • phantom.datetime.TZNaive

Interval

Describes narrower sets of numbers than int and float.

Base classes
  • phantom.interval.Interval
    • Takes class arguments check: IntervalCheck, low: float (defaults to negative infinity), and high: float (defaults to positive infinity). Expects concrete subtypes to specify their runtime type bound as first base.
  • phantom.interval.Open, (low, high)
    • Uses check=phantom.predicates.interval.open.
  • phantom.interval.Closed, [low, high]
    • Uses check=phantom.predicates.interval.closed.
  • phantom.interval.OpenClosed, (low, high]
    • Uses check=phantom.predicates.interval.open_closed.
  • phantom.interval.ClosedOpen, [low, high)
    • Uses check=phantom.predicates.interval.closed_open.
Implemented intervals
  • phantom.interval.Natural, (0, ∞)
  • phantom.interval.NegativeInt, (-∞, 0)
  • phantom.interval.Portion, (0, 1)

Regular expressions

Takes pattern: Pattern[str] as class argument.

  • phantom.re.Match, uses phantom.predicates.re.is_match.
  • phantom.re.FullMatch, uses phantom.predicates.re.is_full_match.

Sized collections

Describes collections with size boundaries. These types should only be used with immutable collections. There is a naive check that eliminates some of the most common mutable collections in the instance check, however a guaranteed check is probably impossible to implement, so developer discipline is required.

  • phantom.sized.PhantomSized[T], takes class argument len: Predicate[float].
  • phantom.sized.NonEmpty[T], a sized collection with at least one item.
  • phantom.sized.Empty[T], an empty collection.

Shipped predicates and factories

Bool

  • phantom.predicates.bool.true: Predicate[object] always returns True.
  • phantom.predicates.bool.false: Predicate[object] always returns False.
  • phantom.predicates.bool.negate(p: Predicate[T]) -> Predicate[T] negates a given predicate.
  • phantom.predicates.bool.truthy: Predicate[object] returns True for truthy objects.
  • phantom.predicates.bool.falsy: Predicate[object] returns True for falsy objects.
  • phantom.predicates.bool.both(p: Predicate[T], q: Predicate[T]) -> Predicate[T] creates a new predicate that succeeds when both of the given predicates succeed.
  • phantom.predicates.bool.all_of(predicates: Iterable[Predicate[T]]) -> Predicate[T] creates a new predicate that succeeds when all of the given predicates succeed.
  • phantom.predicates.bool.any_of(predicates: Iterable[Predicate[T]] -> Predicate[T] creates a new predicate that succeeds when at least one of the given predicates succeed.

Collection

  • phantom.predicates.collection.contains(value: object) -> Predicate[Container] creates a new predicate that succeeds when its argument contains value.
  • phantom.predicates.collection.contained(container: Container) -> Predicate[object] creates a new predicate that succeeds when its argument is contained by container.
  • phantom.predicates.collection.count(predicate: Predicate[int]) -> Predicate[Sized] creates a predicate that succeeds when the size of its argument satisfies the given predicate.
  • phantom.predicates.collection.exists(predicate: Predicate[object]) -> Predicate[Iterable] creates a predicate that succeeds when one or more items in its argument satisfies predicate.

Datetime

  • phantom.predicates.datetime.is_tz_aware: Predicate[datetime.datetime] succeeds if its argument is timezone aware.
  • phantom.predicates.datetime.is_tz_naive: Predicate[datetime.datetime] succeeds if its argument is timezone naive.

Generic

  • phantom.predicates.generic.equal(a: object) -> Predicate[object] creates a new predicate that succeeds when its argument is equal to a.
  • phantom.predicates.generic.identical(a: object) -> Predicate[object] creates a new predicate that succeeds when its argument is identical to a.
  • phantom.predicates.generic.of_type(t: Union[Type, Tuple[Type, ...]]) -> Predicate[object] creates a new predicate that succeeds when its argument is an instance of t.

Interval

See corresponding shipped phantom types. Creates new predicates that succeed when their argument is strictly or non strictly between the upper and lower bounds.

  • phantom.predicates.interval.open(low: float, high: float) -> Predicate[float]
  • phantom.predicates.interval.open_closed(low: float, high: float) -> Predicate[float]
  • phantom.predicates.interval.closed_open(low: float, high: float) -> Predicate[float]
  • phantom.predicates.interval.closed(low: float, high: float) -> Predicate[float]

Numeric

  • phantom.predicates.numeric.less(n: float) -> Predicate[float] creates a new predicate that succeeds when its argument is strictly less than n.
  • phantom.predicates.numeric.le(n: float) -> Predicate[float] creates a new predicate that succeeds when its argument is less than or equal to n.
  • phantom.predicates.numeric.greater(n: float) -> Predicate[float] creates a new predicate that succeeds when its argument is strictly greater than n.
  • phantom.predicates.numeric.ge(n: float) -> Predicate[float] creates a new predicate that succeeds when its argument is greater than or equal to n.
  • phantom.predicates.numeric.positive: Predicate[float] succeeds when its argument is strictly greater than zero.
  • phantom.predicates.numeric.non_positive: Predicate[float] succeeds when its argument is less than or equal to zero.
  • phantom.predicates.numeric.negative: Predicate[float] succeeds when its argument is strictly less than zero.
  • phantom.predicates.numeric.non_negative: Predicate[float] succeeds when its argument is greater than or equal to zero.
  • phantom.predicates.numeric.modulo(n: float, p: Predicate[float]) -> Predicate[float] creates a new predicate that succeeds when its argument modulo n satisfies the given predicate p.
  • phantom.predicates.numeric.even: Predicate[int] succeeds when its argument is even.
  • phantom.predicates.numeric.odd: Predicate[int] succeeds when its argument is odd.

Regular Expressions

  • phantom.predicates.re.is_match(pattern: Pattern[str]) -> Predicate[str] creates a new predicate that succeeds when the start of its argument matches the given pattern.
  • phantom.predicates.re.is_full_match(pattern: Pattern[str]) -> Predicate[str] creates a new predicate that succeeds when its whole argument matches the given pattern.

External Wrappers

A collection of phantom types that wraps functionality of well maintained implementations of third-party validation libraries. Importing from phantom.ext.* is a hint that more dependencies need to be installed.

Phone numbers

Requires the phonenumbers package which can be installed with:

pip install phantom-types[phonenumbers]
Types
  • phantom.ext.phonenumbers.PhoneNumber
  • phantom.ext.phonenumbers.FormattedPhoneNumber
    • FormattedPhoneNumber.parse() normalizes numbers using phonenumbers.PhoneNumberFormat.E164 and might raise InvalidPhoneNumber.
Functions
  • phantom.ext.phonenumbers.is_phone_number: Predicate[str]
  • phantom.ext.phonenumbers.is_formatted_phone_number: Predicate[str]
  • phantom.ext.phonenumbers.normalize_phone_number(phone_number: str, country_code: Optional[str]=None) -> FormattedPhoneNumber normalizes numbers using phonenumbers.PhoneNumberFormat.E164 and might raise InvalidPhoneNumber.
Exceptions
  • phantom.ext.phonenumbers.InvalidPhoneNumber

Country codes

Requires the iso3166 package which can be installed with:

pip install phantom-types[iso3166]
Types
  • phantom.ext.iso3166.Alpha2
    • Alpha2.parse() normalizes mixed case codes.
  • phantom.ext.iso3166.CountryCode alias of Alpha2
Functions
  • phantom.ext.iso3166.normalize_alpha2_country_code(country_code: str) -> Alpha2 normalizes mixed case country codes and might raise InvalidCountryCode.
Exceptions
  • phantom.ext.iso3166.InvalidCountryCode

Creating phantom types

Phantom types are created by subclassing phantom.base.Phantom and defining an __instancecheck__ method:

from typing import Any
from typing import TYPE_CHECKING

from phantom.base import PhantomBase


class Greeting(PhantomBase):
    @classmethod
    def __instancecheck__(cls, instance: Any) -> bool:
        return (
            isinstance(instance, str)
            and instance.startswith(("Hello", "Hi"))
        )


hello = "Hello there"
# We can narrow types using mypy's type guards
assert isinstance(hello, Greeting)
# or explicitly when we need to
hi = Greeting.parse("Hi there")

# The runtime types are unchanged and will still be str for our greetings
assert type(hello) is str
assert type(hi) is str

# But their static types will be Greeting, retaining the information that our
# strings are not just any strs
if TYPE_CHECKING:
    reveal_type(hello)
    reveal_type(hi)

# As this string doesn't fulfill our __instancecheck__, it will not be an
# instance of Greeting.
assert not isinstance("Goodbye", Greeting)

Checkout out the dacite example for how to create dataclasses with rich phantom-typed fields without duplicating type definitions or losing parsed information.

Using predicates

Most of the shipped phantom types are implemented using boolean predicates. A boolean predicate is simply a function that takes a single argument and returns either True or False. While using boolean predicates is not necessary to use phantom types, building up a library of types doing so allows reusing small and easily testable functions to create a plethora of specialized types. Boolean predicates are usually easy to reason about as they are pure functions with only two possible return values.

Studying the phantom types shipped in this library is recommended for gaining deeper insight into how to implement more complicated types.

Now, looking at the example we implemented by subclassing Phantom and providing an __instancecheck__ method, let's try and achieve the same using predicates. The PredicateType class already implements an __instancecheck__ method and will usually reduce the amount of boilerplate required.

from phantom.base import Phantom


# A boolean predicate that checks if a given string is a greeting. This function is of
# type `Predicate[str]` as it requires its argument to be a `str`.
def is_greeting(instance: str) -> bool:
    return instance.startswith(("Hello", "Hi"))


# Since our predicate requires its argument to be a `str`, we must make the bound of the
# phantom type `str` as well. We do that by making it it's first base. Any base
# specified before Phantom is implicitly interpreted as its bound, unless an explicit
# bound is specificed as a class argument.
class Greeting(str, Phantom, predicate=is_greeting):
    ...


# Now we can make the same operations as with our previous example.
hello = "Hello there"
assert isinstance(hello, Greeting)
hi = Greeting.parse("Hi there")

As you can see, in addition to having less boilerplate than the previous example, this style also has the added benefit of separating out business logic into simple reusable functions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

phantom-types-0.4.0.tar.gz (22.0 kB view details)

Uploaded Source

Built Distribution

phantom_types-0.4.0-py3-none-any.whl (25.7 kB view details)

Uploaded Python 3

File details

Details for the file phantom-types-0.4.0.tar.gz.

File metadata

  • Download URL: phantom-types-0.4.0.tar.gz
  • Upload date:
  • Size: 22.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for phantom-types-0.4.0.tar.gz
Algorithm Hash digest
SHA256 34187381344a279d568b6017597e9714a4c677f80f22ded0fd2c92393d84149d
MD5 0b9abceffe4d65e2191bbed0708cd94b
BLAKE2b-256 04619b70d5cfad21a4414f03ef2c15f38392b5d50e57a31f374ed32b8d9edace

See more details on using hashes here.

File details

Details for the file phantom_types-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: phantom_types-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 25.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for phantom_types-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c78a8aab613ba5a7146f59e28a6984a4cf00e5a020a530739459936193d90d4a
MD5 ce7c7cd4fe28b6ae2ee8501be15e8a8d
BLAKE2b-256 ffa3861b7db0eb1d1a1eeba75e535f4f8826df1b7e604c01d7bfecc08b3f7030

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page