Skip to main content

Phantom types for Python

Project description

Depiction of phantom types in the wild

phantom-types

CI Build Status Documentation Build Status Test coverage report
PyPI Package Python versions

Phantom types for Python will help you make illegal states unrepresentable and avoid shotgun parsing by enabling you to practice "Parse, don't validate".

Checkout the complete documentation on Read the Docs →

Installation

$  python3 -m pip install phantom-types

Extras

$  python3 -m pip install phantom-types[all]

Examples

By introducing a phantom type we can define a pre-condition for a function argument.

from phantom import Phantom
from phantom.predicates.collection import contained


class Name(str, Phantom, predicate=contained({"Jane", "Joe"})):
    ...


def greet(name: Name):
    print(f"Hello {name}!")

Now this will be a valid call.

greet(Name.parse("Jane"))

... and so will this.

joe = "Joe"
assert isinstance(joe, Name)
greet(joe)

But this will yield a static type checking error.

greet("bird")

Runtime type checking

By combining phantom types with a runtime type-checker like beartype or typeguard, we can achieve the same level of security as you'd gain from using contracts.

import datetime
from beartype import beartype
from phantom.datetime import TZAware


@beartype
def soon(dt: TZAware) -> TZAware:
    return dt + datetime.timedelta(seconds=10)

The soon function will now validate that both its argument and return value is timezone aware, e.g. pre- and post conditions.

Pydantic support

Phantom types are ready to use with pydantic and have integrated support out-of-the-box. Subclasses of Phantom work with both pydantic's validation and its schema generation.

class Name(str, Phantom, predicate=contained({"Jane", "Joe"})):
    @classmethod
    def __schema__(cls) -> Schema:
        return super().__schema__() | {
            "description": "Either Jane or Joe",
            "format": "custom-name",
        }


class Person(BaseModel):
    name: Name
    created: TZAware


print(json.dumps(Person.schema(), indent=2))

The code above outputs the following JSONSchema.

{
  "title": "Person",
  "type": "object",
  "properties": {
    "name": {
      "title": "Name",
      "description": "Either Jane or Joe",
      "format": "custom-name",
      "type": "string"
    },
    "created": {
      "title": "TZAware",
      "description": "A date-time with timezone data.",
      "type": "string",
      "format": "date-time"
    }
  },
  "required": ["name", "created"]
}

Development

Install development requirements, preferably in a virtualenv:

$ python3 -m pip install .[all,test]

Run tests:

$ pytest
# or
$ make test

Linting and static type checking is setup with pre-commit, after installing it you can setup hooks with the following command, so that checks run before you push changes.

# configure hooks to run when pushing
$ pre-commit install -t pre-push
# or when committing
$ pre-commit install -t pre-commit
# run all checks
$ pre-commit run --all-files
# or just a single hook
$ pre-commit run mypy --all-files

In addition to static type checking, the project is setup with pytest-mypy-plugins to test that exposed mypy types work as expected, these checks will run together with the rest of the test suite, but you can single them out with the following command.

$ make test-typing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

phantom-types-1.0.0.tar.gz (23.6 kB view details)

Uploaded Source

Built Distribution

phantom_types-1.0.0-py3-none-any.whl (28.0 kB view details)

Uploaded Python 3

File details

Details for the file phantom-types-1.0.0.tar.gz.

File metadata

  • Download URL: phantom-types-1.0.0.tar.gz
  • Upload date:
  • Size: 23.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for phantom-types-1.0.0.tar.gz
Algorithm Hash digest
SHA256 c08424050a63584d11f018291092a5aee5b6c4f43952b27eea6b82fc15b81f82
MD5 e51115e58f78bf1e32f1aec04dc44e39
BLAKE2b-256 2a10968e9ebdd8240363d952672db0a8fe118957bd9ada534ec45cca32a1ecfb

See more details on using hashes here.

File details

Details for the file phantom_types-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for phantom_types-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 080d7e5d9e01d799dd8b160ffad4d36549788b872e10ca3902c3cc518cab5c15
MD5 2fbc861a9d0afefb7578f2c573b1f347
BLAKE2b-256 7694c7d9d381f5b52fda3e0951997e9b8e9555de2c081f163ec3abf0f71f59da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page