Skip to main content

Asynchronous and ergonomic Project Lighthouse client library

Project description

Phare

PyPI Build

An asynchronous and ergonomic client library for the Project Lighthouse API.

Example

import asyncio
import numpy as np
import os

from phare.auth import Auth
from phare.lighthouse import Lighthouse
from phare.constants import LIGHTHOUSE_FRAME_SHAPE, LIGHTHOUSE_URL

async def main():
    user = os.environ['LIGHTHOUSE_USER']
    token = os.environ['LIGHTHOUSE_TOKEN']
    url = os.environ.get('LIGHTHOUSE_URL', LIGHTHOUSE_URL)

    async with await Lighthouse.connect(Auth(user, token), url) as lh:
        frame = np.random.randint(0, 255, size=LIGHTHOUSE_FRAME_SHAPE, dtype=np.uint8)
        await lh.put_model(frame)

asyncio.run(main())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

phare-0.0.3.tar.gz (5.7 kB view details)

Uploaded Source

File details

Details for the file phare-0.0.3.tar.gz.

File metadata

  • Download URL: phare-0.0.3.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for phare-0.0.3.tar.gz
Algorithm Hash digest
SHA256 670b4b91936056c134a49fda83182d8c088d87ea142913867f9adb279bb3d9e0
MD5 7016cd3d109b00a75f1fdf9441cc5b06
BLAKE2b-256 e957f53fb0bf59ead14eddb4b23e0514dbec947f18fce6860eb54ce023bb5501

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page