Skip to main content

a phenotyping pipeline for python

Project description

phenopype is a phenotyping pipeline for python. It is designed to extract phenotypic data from digital images or video material with minimal user input in a semi, or fully automated fashion. At the moment it is set up to be run from a python integrated development environment (IDE), like [spyder](https://www.spyder-ide.org/). Some python knowledge is necessary, but most of the heavy lifting is done in the background. If you are interested in using phenopype, [install](#installation) it from the Python Package Index using pip install phenopype. You also may want to clone this repository so you can use the [tutorials](#tutorials) to get started.

DISCLAIMER: ONGOING DEVELOPMENT

The program is still in alpha stage and development progresses slow - this is [me](https://luerig.net) trying to write a program, while learning to code properly in the first place, next to my everyday work. A few core features like blob-counting, object detection or videotracking are working ([see below](#features)), other modules like landmarking or local object-extraction are not fully implemented yet. More detailed documentation is in the making, but please do get in touch if things are not working as expected and I will try my best to help.

# installation

  1. install python3 with anaconda: go to https://www.anaconda.com/download/, chose python 3.x for your OS, download install it

  2. if you have not done so during the installation, [add “conda” to your PATH](https://stackoverflow.com/questions/44597662/conda-command-is-not-recognized-on-windows-10)

3. Install phenopype using pip in your terminal or command line: ` pip install phenopype ` 4. Run the [tutorials](tutorials) with jupyter notebook: ` pip install jupyter notebook jupyter notebook `

If you are having difficulties refer to these tutorials:

In windows, run everything with administrator privileges!

# tutorials

Download and unpack this repository, open a command line /bash terminal, and cd to the example folder inside the repo. Assuming you have phenopype, it’s dependencies and jupyter notebook installed (comes with scientific python distributions like Anaconda, see [above](#installation)), type jupyter notebook and open one of the [tutorials](tutorials):

  • [0_python_intro.ipynb](tutorials/0_python_intro.ipynb) This tutorial is meant to provide a very short overview of the python code needed for basic phenopype workflow. This is useful if you have never used python before, but would like to be able to explore phenopype functionality on your own.

  • [1_basic_functions.ipynb](tutorials/1_basic_workflow.ipynb) This tutorial demonstrates basic workflow with phenopype: the creation of a project, directories and how to use the functions alone and within a programmed loop.

  • [2_object_detection.ipynb](tutorials/2_object_detection.ipynb) This tutorial demonstrates how single or multiple objects can be detected and phenotyped in images.

# development

Planned featues include

  • hdf5-implementation (original image > processed image (+ data) > image for ML-training-dataset >> hdf5)

  • build your own training data for deep learning algorithms using hdf5 framework

  • add Mask R-CNN deep learning algorithm using the opencv implementation (https://github.com/opencv/opencv/tree/master/samples/dnn)

If you have ideas for other functionality, let me know!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

phenopype-0.7.0.tar.gz (27.2 kB view details)

Uploaded Source

Built Distribution

phenopype-0.7.0-py3-none-any.whl (31.9 kB view details)

Uploaded Python 3

File details

Details for the file phenopype-0.7.0.tar.gz.

File metadata

  • Download URL: phenopype-0.7.0.tar.gz
  • Upload date:
  • Size: 27.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for phenopype-0.7.0.tar.gz
Algorithm Hash digest
SHA256 8b1589738a4df69cea762d98661cb584548ff98588487dd4568efd2bd500a998
MD5 82870a12bcb47843defbafa969db011d
BLAKE2b-256 bf17224d01ae096dcc438bf7bd93fcecd461f70953230f8327194efbacf9494f

See more details on using hashes here.

File details

Details for the file phenopype-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: phenopype-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 31.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for phenopype-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f70746766ad141cb431de87e8d2b893b6981e899677ccd708e75184f7183f2c6
MD5 2fa704bdc53b6125fb6572b4bc994b46
BLAKE2b-256 ba59b773f527eae1b647333944fc7f9997cd20c228f607bf98907f4263ec01ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page