Build AI Agents with memory, knowledge and tools.
Project description
phidata
Build AI Agents with memory, knowledge, tools and reasoning
What is phidata?
Phidata is a framework for building agentic systems, use phidata to:
- Build powerful AI Agents with memory, knowledge, tools and reasoning.
- Run those agents as a software application (with a database, vectordb and api).
- Monitor, evaluate and optimize your agentic system.
Install
pip install -U phidata
Usage
Let's start by building a simple agent that can search the web, create a file web_search.py
from phi.agent import Agent
from phi.model.openai import OpenAIChat
from phi.tools.duckduckgo import DuckDuckGo
web_agent = Agent(
name="Web Agent",
role="Search the web for information",
model=OpenAIChat(id="gpt-4o"),
tools=[DuckDuckGo()],
markdown=True,
show_tool_calls=True,
)
web_agent.print_response("Whats happening in France?", stream=True)
Install libraries, export your OPENAI_API_KEY
and run the Agent:
pip install phidata openai duckduckgo-search
export OPENAI_API_KEY=sk-xxxx
python web_search.py
Lets create another agent that can query financial data, create a file finance_agent.py
from phi.agent import Agent
from phi.model.openai import OpenAIChat
from phi.tools.yfinance import YFinanceTools
finance_agent = Agent(
name="Finance Agent",
role="Get financial data",
model=OpenAIChat(id="gpt-4o"),
tools=[YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True, company_news=True)],
instructions=["Always use tables to display data"],
markdown=True,
show_tool_calls=True,
)
finance_agent.print_response("Share analyst recommendations for NVDA", stream=True)
Install libraries and run the Agent:
pip install yfinance
python finance_agent.py
Now lets create a team of agents, create a file agent_team.py
from phi.agent import Agent
from phi.model.openai import OpenAIChat
from phi.tools.duckduckgo import DuckDuckGo
from phi.tools.yfinance import YFinanceTools
web_agent = Agent(
name="Web Agent",
role="Search the web for information",
model=OpenAIChat(id="gpt-4o"),
tools=[DuckDuckGo()],
markdown=True,
show_tool_calls=True,
)
finance_agent = Agent(
name="Finance Agent",
role="Get financial data",
model=OpenAIChat(id="gpt-4o"),
tools=[YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True, company_news=True)],
instructions=["Always use tables to display data"],
markdown=True,
show_tool_calls=True,
)
agent_team = Agent(
team=[web_agent, finance_agent],
show_tool_calls=True,
markdown=True,
)
agent_team.print_response("Research the web for NVDA and share analyst recommendations", stream=True)
Run the Agent team:
python agent_team.py
Reasoning Agents
Reasoning helps agents work through a problem step-by-step, backtracking and correcting as needed. Let's give the reasonining agent a simple task that gpt-4o fails at.
Create a file reasoning_agent.py
from phi.agent import Agent
from phi.model.openai import OpenAIChat
from phi.cli.console import console
regular_agent = Agent(model=OpenAIChat(id="gpt-4o"), markdown=True)
reasoning_agent = Agent(
model=OpenAIChat(id="gpt-4o-2024-08-06"),
reasoning=True,
markdown=True,
structured_outputs=True,
)
task = "How many 'r' are in the word 'supercalifragilisticexpialidocious'?"
console.rule("[bold green]Regular Agent[/bold green]")
regular_agent.print_response(task, stream=True)
console.rule("[bold yellow]Reasoning Agent[/bold yellow]")
reasoning_agent.print_response(task, stream=True, show_full_reasoning=True)
Run the Reasoning Agent:
python reasoning_agent.py
More information
- Read the docs at docs.phidata.com
- Chat with us on discord
More examples
Agent that can write and run python code
Show code
The PythonAgent
can achieve tasks by writing and running python code.
- Create a file
python_agent.py
from phi.agent.python import PythonAgent
from phi.model.openai import OpenAIChat
from phi.file.local.csv import CsvFile
python_agent = PythonAgent(
model=OpenAIChat(id="gpt-4o"),
files=[
CsvFile(
path="https://phidata-public.s3.amazonaws.com/demo_data/IMDB-Movie-Data.csv",
description="Contains information about movies from IMDB.",
)
],
markdown=True,
pip_install=True,
show_tool_calls=True,
)
python_agent.print_response("What is the average rating of movies?")
- Install pandas and run the
python_agent.py
pip install pandas
python python_agent.py
Agent that can analyze data using SQL
Show code
The DuckDbAgent
can perform data analysis using SQL.
- Create a file
data_analyst.py
import json
from phi.model.openai import OpenAIChat
from phi.agent.duckdb import DuckDbAgent
data_analyst = DuckDbAgent(
model=OpenAIChat(model="gpt-4o"),
markdown=True,
semantic_model=json.dumps(
{
"tables": [
{
"name": "movies",
"description": "Contains information about movies from IMDB.",
"path": "https://phidata-public.s3.amazonaws.com/demo_data/IMDB-Movie-Data.csv",
}
]
},
indent=2,
),
)
data_analyst.print_response(
"Show me a histogram of ratings. "
"Choose an appropriate bucket size but share how you chose it. "
"Show me the result as a pretty ascii diagram",
stream=True,
)
- Install duckdb and run the
data_analyst.py
file
pip install duckdb
python data_analyst.py
Agent that can generate structured outputs
Show code
One of our favorite LLM features is generating structured data (i.e. a pydantic model) from text. Use this feature to extract features, generate movie scripts, produce fake data etc.
Let's create a Movie Agent to write a MovieScript
for us.
- Create a file
movie_agent.py
from typing import List
from phi.agent import Agent
from phi.model.openai import OpenAIChat
from pydantic import BaseModel, Field
class MovieScript(BaseModel):
setting: str = Field(..., description="Provide a nice setting for a blockbuster movie.")
ending: str = Field(..., description="Ending of the movie. If not available, provide a happy ending.")
genre: str = Field(..., description="Genre of the movie. If not available, select action, thriller or romantic comedy.")
name: str = Field(..., description="Give a name to this movie")
characters: List[str] = Field(..., description="Name of characters for this movie.")
storyline: str = Field(..., description="3 sentence storyline for the movie. Make it exciting!")
# Agent that uses JSON mode
json_mode_agent = Agent(
model=OpenAIChat(id="gpt-4o"),
description="You write movie scripts.",
response_model=MovieScript,
)
# Agent that uses structured outputs
structured_output_agent = Agent(
model=OpenAIChat(id="gpt-4o-2024-08-06"),
description="You write movie scripts.",
response_model=MovieScript,
structured_outputs=True,
)
json_mode_agent.print_response("New York")
structured_output_agent.print_response("New York")
- Run the
movie_agent.py
file
python movie_agent.py
- The output is an object of the
MovieScript
class, here's how it looks:
MovieScript(
│ setting='A bustling and vibrant New York City',
│ ending='The protagonist saves the city and reconciles with their estranged family.',
│ genre='action',
│ name='City Pulse',
│ characters=['Alex Mercer', 'Nina Castillo', 'Detective Mike Johnson'],
│ storyline='In the heart of New York City, a former cop turned vigilante, Alex Mercer, teams up with a street-smart activist, Nina Castillo, to take down a corrupt political figure who threatens to destroy the city. As they navigate through the intricate web of power and deception, they uncover shocking truths that push them to the brink of their abilities. With time running out, they must race against the clock to save New York and confront their own demons.'
)
Checkout the cookbook for more examples.
Contributions
We're an open-source project and welcome contributions, please read the contributing guide for more information.
Request a feature
- If you have a feature request, please open an issue or make a pull request.
- If you have ideas on how we can improve, please create a discussion.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.