Skip to main content

PhotonTorch: a photonic simulation framework based on the deep learning framework PyTorch.

Project description

Photontorch

Photontorch is a photonic simulator for highly parallel simulation and optimization of photonic circuits in time and frequency domain. Photontorch features CUDA enabled simulation and optimization of photonic circuits. It leverages the deep learning framework PyTorch to view the photonic circuit as essentially a recurrent neural network. This enables the use of native PyTorch optimizers to optimize the (physical) parameters of the circuit.

Installation

Stable version

Photontorch can be installed with pip:

pip install photontorch

Development version

During development or to use the most recent Photontorch version, clone the repository and link with pip:

git clone https://git.photontorch.com/photontorch.git
./install-git-hooks.sh # Unix [Linux/Mac/BSD/...]
install-git-hooks.bat  # Windows
pip install -e photontorch

During development, use pytest to run the tests from within the root of the git-repository:

pytest tests

Documentation

Read the full documentation here: https://docs.photontorch.com

Dependencies

Required dependencies

  • Python 2.7 (Linux only) or 3.6+. It's recommended to use the Anaconda distribution.
  • pytorch>=1.5.0: conda install pytorch (see pytorch.org for more installation options for your CUDA version)
  • numpy: conda install numpy
  • scipy: conda install scipy

Optional (but recommended) dependencies

  • tqdm: conda install tqdm [progress bars]
  • networkx: conda install networkx [network visualization]
  • matplotlib: conda install matplotlib [visualization]
  • pytest: conda install pytest [to run tests]
  • pandoc: conda install pandoc [to generate docs]
  • sphinx: pip install sphinx nbsphinx [to generate docs]

Reference

If you're using Photontorch in your work or feel in any way inspired by it, we ask you to cite us in your work:

Floris Laporte, Joni Dambre, and Peter Bienstman. "Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch." Scientific reports 9.1 (2019): 5918.

Known issues

  • Complex tensor support. Complex tensors are not supported in PyTorch/Photontorch. Wherever complex tensors would be applicable, Photontorch expects a real-valued tensor with the real and imag part stacked in the first dimension. The Photontorch issue can be followed here and the PyTorch issue here.
  • Sparse tensor support. A lot of memory usage can probably be avoided when transitioning to sparse tensor representations under the hood. The Photontorch issue can be followed here

License

Photontorch is available under an Academic License. This means that there are no restrictions on the usage in a purely non-commercial or academic context. For commercial applications you can always contact the authors.

Copyright © 2020, Floris Laporte - Universiteit Gent - Ghent University - Academic License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

photontorch-0.1.0.tar.gz (42.0 kB view details)

Uploaded Source

Built Distribution

photontorch-0.1.0-py3-none-any.whl (54.3 kB view details)

Uploaded Python 3

File details

Details for the file photontorch-0.1.0.tar.gz.

File metadata

  • Download URL: photontorch-0.1.0.tar.gz
  • Upload date:
  • Size: 42.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for photontorch-0.1.0.tar.gz
Algorithm Hash digest
SHA256 28dbfeae8da5d45775bb5263856222c7c38fdbea7a2fb7d62df507be8747c464
MD5 8afb6570e3cab4e2e09bae9d06a8d740
BLAKE2b-256 fb26da8d3e1ca43e4692c4045900a3f38134a6300364eddf5edde5c895a07295

See more details on using hashes here.

File details

Details for the file photontorch-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: photontorch-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for photontorch-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ff497a888e79495c1bdc6a1fa5e624490fabd42c763298225ed736758fc5b50d
MD5 25419e4d21f410181989146c9bda6eef
BLAKE2b-256 58c1fbd2237249485b3bee37e615531894af1c5f6afcc153659ef4aa336d6f6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page