Skip to main content

PhotonTorch: a photonic simulation framework based on the deep learning framework PyTorch.

Project description

Photontorch

Photontorch is a photonic simulator for highly parallel simulation and optimization of photonic circuits in time and frequency domain. Photontorch features CUDA enabled simulation and optimization of photonic circuits. It leverages the deep learning framework PyTorch to view the photonic circuit as essentially a recurrent neural network. This enables the use of native PyTorch optimizers to optimize the (physical) parameters of the circuit.

Installation

Stable version

Photontorch can be installed with pip:

pip install photontorch

Development version

During development or to use the most recent Photontorch version, clone the repository and link with pip:

git clone https://git.photontorch.com/photontorch.git
./install-git-hooks.sh # Unix [Linux/Mac/BSD/...]
install-git-hooks.bat  # Windows
pip install -e photontorch

During development, use pytest to run the tests from within the root of the git-repository:

pytest tests

Documentation

Read the full documentation here: https://docs.photontorch.com

Dependencies

Required dependencies

  • Python 2.7 (Linux only) or 3.6+. It's recommended to use the Anaconda distribution.
  • pytorch>=1.5.0: conda install pytorch (see pytorch.org for more installation options for your CUDA version)
  • numpy: conda install numpy
  • scipy: conda install scipy

Optional (but recommended) dependencies

  • tqdm: conda install tqdm [progress bars]
  • networkx: conda install networkx [network visualization]
  • matplotlib: conda install matplotlib [visualization]
  • pytest: conda install pytest [to run tests]
  • pandoc: conda install pandoc [to generate docs]
  • sphinx: pip install sphinx nbsphinx [to generate docs]
  • torch-lfilter: pip install torch-lfilter [faster lfilter for detectors]

Reference

If you're using Photontorch in your work or feel in any way inspired by it, we ask you to cite us in your work:

Floris Laporte, Joni Dambre, and Peter Bienstman. "Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch." Scientific reports 9.1 (2019): 5918.

Known issues

  • Complex tensor support. Complex tensors are not supported in PyTorch/Photontorch. Wherever complex tensors would be applicable, Photontorch expects a real-valued tensor with the real and imag part stacked in the first dimension. The Photontorch issue can be followed here and the PyTorch issue here.
  • Sparse tensor support. A lot of memory usage can probably be avoided when transitioning to sparse tensor representations under the hood. The Photontorch issue can be followed here

License

Photontorch is available under an Academic License. This means that there are no restrictions on the usage in a purely non-commercial or academic context. For commercial applications you can always contact the authors.

Copyright © 2020, Floris Laporte - Universiteit Gent - Ghent University - Academic License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

photontorch-0.3.3.tar.gz (41.7 kB view details)

Uploaded Source

Built Distribution

photontorch-0.3.3-py3-none-any.whl (53.8 kB view details)

Uploaded Python 3

File details

Details for the file photontorch-0.3.3.tar.gz.

File metadata

  • Download URL: photontorch-0.3.3.tar.gz
  • Upload date:
  • Size: 41.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200616 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.6

File hashes

Hashes for photontorch-0.3.3.tar.gz
Algorithm Hash digest
SHA256 e8d1ac853abc9f0491e8dd97512058e12a2b90b4ae042aa99b5853555f3fcb47
MD5 351e85c22ee69b0cce4538e50c199a64
BLAKE2b-256 0d19edb80700924accdbb683c68745ed6757fab5ae4ffc8d8900c549ec1d6d8f

See more details on using hashes here.

File details

Details for the file photontorch-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: photontorch-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 53.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200616 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.6

File hashes

Hashes for photontorch-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d20a763c438447ab950ff826b1eccf344c5f6a6a183be8e542a316a1d883ac38
MD5 8ed71073730ff8dbae2d399fbbae8880
BLAKE2b-256 1b7b8b43c24d22723777702c2091c1a8050330381d313f51b2cb90cf9a0a021a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page