Skip to main content

PhotonTorch: a photonic simulation framework based on the deep learning framework PyTorch.

Project description

Photontorch

Photontorch is a photonic simulator for highly parallel simulation and optimization of photonic circuits in time and frequency domain. Photontorch features CUDA enabled simulation and optimization of photonic circuits. It leverages the deep learning framework PyTorch to view the photonic circuit as essentially a recurrent neural network. This enables the use of native PyTorch optimizers to optimize the (physical) parameters of the circuit.

Installation

Stable version

Photontorch can be installed with pip:

pip install photontorch

Development version

During development or to use the most recent Photontorch version, clone the repository and link with pip:

git clone https://git.photontorch.com/photontorch.git
./install-git-hooks.sh # Unix [Linux/Mac/BSD/...]
install-git-hooks.bat  # Windows
pip install -e photontorch

During development, use pytest to run the tests from within the root of the git-repository:

pytest tests

Documentation

Read the full documentation here: https://docs.photontorch.com

Dependencies

Required dependencies

  • Python 2.7 (Linux only) or 3.6+. It's recommended to use the Anaconda distribution.
  • pytorch>=1.5.0: conda install pytorch (see pytorch.org for more installation options for your CUDA version)
  • numpy: conda install numpy
  • scipy: conda install scipy

Optional (but recommended) dependencies

  • tqdm: conda install tqdm [progress bars]
  • networkx: conda install networkx [network visualization]
  • matplotlib: conda install matplotlib [visualization]
  • pytest: conda install pytest [to run tests]
  • pandoc: conda install pandoc [to generate docs]
  • sphinx: pip install sphinx nbsphinx [to generate docs]
  • torch-lfilter: pip install torch-lfilter [faster lfilter for detectors]

Reference

If you're using Photontorch in your work or feel in any way inspired by it, we ask you to cite us in your work:

Floris Laporte, Joni Dambre, and Peter Bienstman. "Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch." Scientific reports 9.1 (2019): 5918.

Known issues

  • Complex tensor support. Complex tensors are not supported in PyTorch/Photontorch. Wherever complex tensors would be applicable, Photontorch expects a real-valued tensor with the real and imag part stacked in the first dimension. The Photontorch issue can be followed here and the PyTorch issue here.
  • Sparse tensor support. A lot of memory usage can probably be avoided when transitioning to a sparse tensor representation for the connection matrices and scatter matrices. The Photontorch issue can be followed here

License

Photontorch used to be available under a custom Academic License, but Since October 2020, Photontorch is now fully open source and available under the AGPLv3.

Copyright © 2020, Floris Laporte - UGent - AGPLv3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

photontorch-0.4.0.tar.gz (42.9 kB view details)

Uploaded Source

Built Distribution

photontorch-0.4.0-py3-none-any.whl (64.6 kB view details)

Uploaded Python 3

File details

Details for the file photontorch-0.4.0.tar.gz.

File metadata

  • Download URL: photontorch-0.4.0.tar.gz
  • Upload date:
  • Size: 42.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for photontorch-0.4.0.tar.gz
Algorithm Hash digest
SHA256 2d481c52076acd893bf2be8073de30d2ee4df6e57e3142892581e24c1e23c8a4
MD5 2de5b319e2b70a4fddb7e3fe8d44571d
BLAKE2b-256 039cf748db26403d86c7327a83b1bf5e3600c0ddcb0dcc2f34c3354b443416a7

See more details on using hashes here.

File details

Details for the file photontorch-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: photontorch-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 64.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for photontorch-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 366e57edaee97158dfec07ca57d200526e959beed03e72ba853540849e5bb905
MD5 9b3d4a8d7706681a0e921f54fe5841cf
BLAKE2b-256 1848b8e0e489642ae93da81f8dee4a9b75c0f85264369d8639de07aab8268a04

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page