Skip to main content

Python package to create physics-based pedestrian models from crowd measurements

Project description

Data-driven physics-based modeling of pedestrian dynamics

PyPI - Python Version Code style: black arXiv

Project Overview

Python package to create physics-based pedestrian models from pedestrian trajectory measurements. This package is an implementation of the data-driven generalized pedestrian model presented in:

Pouw, C. A. S., van der Vleuten, G., Corbetta, A., & Toschi, F. (2024). Data-driven physics-based modeling of pedestrian dynamics. Preprint, https://arxiv.org/abs/2407.20794

Documentation

Usage Notebooks

We provide the following usage notebook on Google Colab:

- Quick-start with the generalized pedestrian model.

The notebook can be used to create a model for the following environments:

  • Walking paths in a narrow corridor.
  • Intersecting walking paths.
  • Walking paths on a train station platform.

Using the CLI

Install the package from source

git clone https://github.com/c-pouw/physics-based-pedestrian-modeling.git
cd physics-based-pedestrian-modeling
pip install -e .

Run the main processing script for one of the available parameter files (listed below)

python physped/main.py params=PARAM_NAME

Parameter Files

Parameter configurations are handled by Hydra. Default parameter files are provided for the following cases:

  • single_paths: Trajectories in a narrow corridor.
  • intersecting_paths: Trajectories intersecting in the origin.
  • asdz_pf12: Complex trajectories on the Amsterdam Zuid train platform 1 and 2.

License

  • Free software: 3-clause BSD license

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file physics_based_pedestrian_modeling-0.2.1.tar.gz.

File metadata

File hashes

Hashes for physics_based_pedestrian_modeling-0.2.1.tar.gz
Algorithm Hash digest
SHA256 4e563b4c262ccc1a2932ca32126b16f5c47c6c74c2b62bf679f7ecec47d6d4c2
MD5 15861903e6764a24345ad7e6e5fcfb58
BLAKE2b-256 01ed092b1110c18451aadcd659e0357e52837b1896bc1edc9ac1dc048c63fee5

See more details on using hashes here.

File details

Details for the file physics_based_pedestrian_modeling-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for physics_based_pedestrian_modeling-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4f25fa4a5f9ed6f443779ce0898296dfcef353af6b30e05314ce4c653888ca95
MD5 0cf5de9bd908afab5d6c32c2e62d337e
BLAKE2b-256 c88431ad6cf5a89da70e2f8c66b59869a69e2f68ab4121ac578bf35ec31a584e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page