Skip to main content

Python package to create physics-based pedestrian models from crowd measurements

Project description

Data-driven physics-based modeling of pedestrian dynamics

PyPI - Python Version Code style: black arXiv

Project Overview

Python package to create physics-based pedestrian models from pedestrian trajectory measurements. This package is an implementation of the data-driven generalized pedestrian model presented in:

Pouw, C. A. S., van der Vleuten, G., Corbetta, A., & Toschi, F. (2024). Data-driven physics-based modeling of pedestrian dynamics. Preprint, https://arxiv.org/abs/2407.20794

Documentation

Usage Notebooks

We provide the following usage notebook on Google Colab:

- Quick-start with the generalized pedestrian model.

The notebook can be used to create a model for the following environments:

  • Walking paths in a narrow corridor.
  • Intersecting walking paths.
  • Walking paths on a train station platform.

Using the CLI

Install the package from source

git clone https://github.com/c-pouw/physics-based-pedestrian-modeling.git
cd physics-based-pedestrian-modeling
pip install -e .

Run the main processing script for one of the available parameter files (listed below)

python physped/main.py params=PARAM_NAME

Parameter Files

Parameter configurations are handled by Hydra. Default parameter files are provided for the following cases:

  • single_paths: Trajectories in a narrow corridor.
  • intersecting_paths: Trajectories intersecting in the origin.
  • asdz_pf12: Complex trajectories on the Amsterdam Zuid train platform 1 and 2.

License

  • Free software: 3-clause BSD license

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file physics_based_pedestrian_modeling-0.2.3.tar.gz.

File metadata

File hashes

Hashes for physics_based_pedestrian_modeling-0.2.3.tar.gz
Algorithm Hash digest
SHA256 dc0b28442cbedffa968a4335159ea6a545b891556a56f0a0ffbb532070fd03fd
MD5 3402fc483985151a8dcb4d4090bb7324
BLAKE2b-256 80b52be978d39e358123f7dd562f94923e89a1db8151d6c06f0285db1ebb5af2

See more details on using hashes here.

File details

Details for the file physics_based_pedestrian_modeling-0.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for physics_based_pedestrian_modeling-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6848c57d134b2c3845acd65cf82e27876bdec31bd0a9bc6c9c52f89bca30d8bb
MD5 332d60fe4dd4d7541bc9acb6d9e47952
BLAKE2b-256 b33ccda9c7d2dbe119f972f7901cd39f14f2c6cccdfd3fad07dfc84fed50104f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page