Skip to main content

Simulation of quantum many-body systems with tensor networks in Python

Project description

TeNPy: Tensor Network Python

GitHub last commit Documentation Build GitHub issues conda PyPi Code Coverage

TeNPy (short for ‘Tensor Network Python’) is a Python library for the simulation of strongly correlated quantum systems with tensor networks.

The philosophy of this library is to get a new balance of a good readability and usability for new-comers, and at the same time powerful algorithms and fast development of new algorithms for experts. For good readability, we include an extensive documentation next to the code, both in Python doc strings and separately as “user guides”, as well as simple example codes and even toy codes, which just demonstrate various algorithms (like TEBD and DMRG) in ~100 lines per file.

How do I get set up?

If you have the conda package manager, you can install the latest released version of TeNPy with:

conda install --channel=conda-forge physics-tenpy

Further details and alternative methods can be found the file doc/INSTALL.rst. The latest version of the source code can be obtained from https://github.com/tenpy/tenpy.

How to read the documentation

The documentation is available online at https://tenpy.readthedocs.io/. The documentation is roughly split in two parts: on one hand the full “reference” containing the documentation of all functions, classes, methods, etc., and on the other hand the “user guide” containing some introductions with additional explanations and examples.

The documentation is based on Python’s docstrings, and some additional *.rst files located in the folder doc/ of the repository. All documentation is formatted as reStructuredText, which means it is quite readable in the source plain text, but can also be converted to other formats. If you like it simple, you can just use interactive python help(), Python IDEs of your choice or jupyter notebooks, or just read the source. Moreover, the documentation gets converted into HTML using Sphinx, and is made available online at https://tenpy.readthedocs.io/. The big advantages of the (online) HTML documentation are a lot of cross-links between different functions, and even a search function. If you prefer yet another format, you can try to build the documentation yourself, as described in doc/contr/build_doc.rst.

Help - I looked at the documentation, but I don’t understand how …?

We have set up a community forum at https://tenpy.johannes-hauschild.de/, where you can post questions and hopefully find answers. Once you got some experience with TeNPy, you might also be able to contribute to the community and answer some questions yourself ;-) We also use this forum for official announcements, for example when we release a new version.

I found a bug

You might want to check the github issues, if someone else already reported the same problem. To report a new bug, just open a new issue on github. If you already know how to fix it, you can just create a pull request :) If you are not sure whether your problem is a bug or a feature, you can also ask for help in the TeNPy forum.

Citing TeNPy

When you use TeNPy for a work published in an academic journal, you can cite this paper to acknowledge the work put into the development of TeNPy. (The license of TeNPy does not force you, however.) For example, you could add the sentence "Calculations were performed using the TeNPy Library (version X.X.X)\cite{tenpy}." in the acknowledgements or in the main text.

The corresponding BibTex Entry would be the following (the \url{...} requires \usepackage{hyperref} in the LaTeX preamble.):

@Article{tenpy,
    title={{Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)}},
    author={Johannes Hauschild and Frank Pollmann},
    journal={SciPost Phys. Lect. Notes},
    pages={5},
    year={2018},
    publisher={SciPost},
    doi={10.21468/SciPostPhysLectNotes.5},
    url={https://scipost.org/10.21468/SciPostPhysLectNotes.5},
    archiveprefix={arXiv},
    eprint={1805.00055},
    note={Code available from \url{https://github.com/tenpy/tenpy}},
}

To keep us motivated, you can also include your work into the list of papers using TeNPy.

Acknowledgment

This work was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05- CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program (KC23DAC Topological and Correlated Matter via Tensor Networks and Quantum Monte Carlo).

License

The code is licensed under GPL-v3.0 given in the file LICENSE of the repository, in the online documentation readable at https://tenpy.readthedocs.io/en/latest/install/license.html.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

physics-tenpy-0.99.0.tar.gz (974.5 kB view details)

Uploaded Source

Built Distributions

physics_tenpy-0.99.0-cp312-cp312-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

physics_tenpy-0.99.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

physics_tenpy-0.99.0-cp312-cp312-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

physics_tenpy-0.99.0-cp312-cp312-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

physics_tenpy-0.99.0-cp311-cp311-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

physics_tenpy-0.99.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

physics_tenpy-0.99.0-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

physics_tenpy-0.99.0-cp311-cp311-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

physics_tenpy-0.99.0-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

physics_tenpy-0.99.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

physics_tenpy-0.99.0-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

physics_tenpy-0.99.0-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

physics_tenpy-0.99.0-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

physics_tenpy-0.99.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

physics_tenpy-0.99.0-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

physics_tenpy-0.99.0-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

physics_tenpy-0.99.0-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

physics_tenpy-0.99.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

physics_tenpy-0.99.0-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

physics_tenpy-0.99.0-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file physics-tenpy-0.99.0.tar.gz.

File metadata

  • Download URL: physics-tenpy-0.99.0.tar.gz
  • Upload date:
  • Size: 974.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for physics-tenpy-0.99.0.tar.gz
Algorithm Hash digest
SHA256 c2794ba5b7cf70cfad45e4e0b2f48e9646d6a5179229a52327c59105fde7e332
MD5 c55f98d4debdeb0553f23c179feacb3d
BLAKE2b-256 796e1f197048fbbe7a28d989e1342d115e94e8ff3888fd40948a09448f42bf8e

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0bde4940fa9ef527f0fe6ba3951866f3697f763fbfad42ea88b355a4820a7132
MD5 c7d5c8799f7120184198a4523609fa82
BLAKE2b-256 a8010952c42f6bca89405d7be1998ba9acb39ea8e12ff1c3c4b4447ca2ff1083

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b865c9972270f97774f37c8c950ebded8750a7716bdd26f19215b108862793d5
MD5 9b0aca92b371c59d0e39ecf7d4e69956
BLAKE2b-256 903a4b945831d80c93306ca981a28c906674205fc78c8e6d509d684ca90d4705

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 50914214b0618a616ea61709fcec9d342347f5c89580c868d1c8bd1441114e62
MD5 a153bc6b02452449332abdf912345f0d
BLAKE2b-256 a0980cc29a0447163df9be7cc6b1357ac4cf4183d55e63367fa13fd7a0d5228e

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0875365a63945e58036cf5243859e3b38d93fd97073b5e580978c777e389b871
MD5 3417b89cced92835e342ee95a81840fb
BLAKE2b-256 84770bd00ca3befe1906fffcd3b049f54012a4d3f2402ca0b0ebb567963e6f16

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e34de8890b5a508ede24362f8f4a28c85baf36b4abd10e041b93ad303cc7509c
MD5 784d14b48a7462975abf835326653165
BLAKE2b-256 6ae5fabb5614841cbc4f1e6e627a847f4c3036c83aca143ff10c9eac781bd750

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5b5209f2d9ad7c29b4253c3a3f823e7dcf652502f1cbdf034143f03a7610bef
MD5 5f5b160e6803355169331267dbba4ac6
BLAKE2b-256 6a6d15ecd628e92885e1e646f7ae686f83e6a7d50ba9fbd2ce20e22d301ae27c

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d40272e61ffa0c8221a7fe1de65e4195367f81084101f0f80f69640f1bedb11e
MD5 ac51758c9eec706f2e103ffc3362c7c6
BLAKE2b-256 522a0c821c1ce1627f99cdc7b22f881ef7ea5a41998dc3a105d9ac5f0c12864d

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c30699f77bf29754a6a3c140f3b2a5a785f8aac7cc6a346900ef46db32899a4
MD5 cade54f1f3ca9774ccd66d5b6edf8789
BLAKE2b-256 4de82e590c5276785c07724856cc2237ba6f9b6a0b7a4fa6a25597aff1403e2c

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1ab77507cea7c3b3520922c88cf04c9033f0cb47dde22b6b424c03cd7484f2c5
MD5 96a83b74251c3b380fc4ea76f751097e
BLAKE2b-256 15c2edfbfe70d8eb72e3fb6f088236d8c9d27c1759733497ae19b50ff12b18a8

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1151ced96d237d7a1c3f2187bebb89936339a73e6898f04e7876f6dad859cf7a
MD5 b0563688b9494bd796a876a83d2f5f60
BLAKE2b-256 d54df991062e54f81f5f53e984c73c59abbc1d23a45cba521aafdb1af2868ce5

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58687f1ee9499a51768ee6bfb132e4d85d366b543cbbddca47cae91cc6abf312
MD5 3d76e4169d10f2ed474e4259e5cf9a67
BLAKE2b-256 71c6d8bb4724717d1ab3ba92ab23bd42ad3a30c1f2dda298094522dd0199eed5

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8d9dc90a6ca9df7d4048e0cf3105fab1cdda2e7416e8bf52d631db8bd9395af
MD5 a839a8a3651b9373fbad8735bac9990f
BLAKE2b-256 fa1f34d12ccc82547850cd055a2676a7585be254a11b6203c400c84fcb2149d7

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5c0008e70987f27fed3da5fa87f8d21c1a3e2e34e35725ce866ad64a20ed4264
MD5 bd0442eca2f924bb2802f95f10acdfbd
BLAKE2b-256 456505847aa8af953a406c110780d337edea23a218090314754ba774a713a673

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b639b42f5377fea44d95a3852f93c5a0371c05030caa1d70643c978bf5f9718f
MD5 8bcd1832906b7b0c8fb3c28375c018b9
BLAKE2b-256 6ea6b0058b76b2f1112136f060f7c3bde79e97b38af00f3ff16ed696c0894f1f

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8cfb91f2b8ae17f464bd857d33ba0848c3ec47d31bef3a1d6fdfb8f8897c0328
MD5 fc452636e1387218ecdde8c850f1d194
BLAKE2b-256 aed665b498fdba05ba176f61df7fa89135553ff9c81dd78cef4265d83383629e

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b25d992b2b21f40793fa73aedaaa0116cbebae6d84fa76427d8106b9127daf84
MD5 6fca91e0c4272b9c1371259469f5ccd7
BLAKE2b-256 1e08ba72372aa1bf85b94d96d738dbfa403330dea2c4d7bb628badd71bbd311c

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7c55b16fd49f091468c57e67e870dd762229c25d1310cc721a24f64d9d49f9a9
MD5 e5ba5ecd1cafb414ca6a9fa638f63737
BLAKE2b-256 e958c0c41e8813638c6fe0c0db148f4aa3132b187621f43a303f981aacea1b5a

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 688cd75186680d1c9d07ed109733ecf3c208081244f2b13dfe3c7732fb3c9230
MD5 1ae261c0ea60d5044de285a8e0f49c18
BLAKE2b-256 9111d9e1c6793c1025bfcb9eb577373a508e078e1ef3d7d8bac3a77f94926bb5

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7aef9db1c609b5f14a51cd7eae978835c6ba1b5c9db90f8257c70c31a2fcab39
MD5 0d0086527af45fb53e4a9f647adffcc9
BLAKE2b-256 49bd90180064b75bba1ceb71da6bcc7e053d5a4e69ac0f20436cec8222989bb0

See more details on using hashes here.

File details

Details for the file physics_tenpy-0.99.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-0.99.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b697be24f156c9a4e7221c35414458e8ff1224728f4279dfad083c944279111
MD5 6940804c57f886bcb71f59b287203032
BLAKE2b-256 2b2fa4ca4529110a3b20a406369206d295e829d374d9e80f488493c4a1c0b005

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page