Skip to main content

Simulation of quantum many-body systems with tensor networks in Python

Project description

TeNPy: Tensor Network Python

GitHub last commit Documentation Build GitHub issues conda PyPi Code Coverage

TeNPy (short for ‘Tensor Network Python’) is a Python library for the simulation of strongly correlated quantum systems with tensor networks.

The philosophy of this library is to get a new balance of a good readability and usability for new-comers, and at the same time powerful algorithms and fast development of new algorithms for experts. For good readability, we include an extensive documentation next to the code, both in Python doc strings and separately as “user guides”, as well as simple example codes and even toy codes, which just demonstrate various algorithms (like TEBD and DMRG) in ~100 lines per file.

How do I get set up?

If you have the conda package manager, you can install the latest released version of TeNPy with:

conda install --channel=conda-forge physics-tenpy

Further details and alternative methods can be found the file doc/INSTALL.rst. The latest version of the source code can be obtained from https://github.com/tenpy/tenpy.

How to read the documentation

The documentation is available online at https://tenpy.readthedocs.io/. The documentation is roughly split in two parts: on one hand the full “reference” containing the documentation of all functions, classes, methods, etc., and on the other hand the “user guide” containing some introductions with additional explanations and examples.

The documentation is based on Python’s docstrings, and some additional *.rst files located in the folder doc/ of the repository. All documentation is formatted as reStructuredText, which means it is quite readable in the source plain text, but can also be converted to other formats. If you like it simple, you can just use interactive python help(), Python IDEs of your choice or jupyter notebooks, or just read the source. Moreover, the documentation gets converted into HTML using Sphinx, and is made available online at https://tenpy.readthedocs.io/. The big advantages of the (online) HTML documentation are a lot of cross-links between different functions, and even a search function. If you prefer yet another format, you can try to build the documentation yourself, as described in doc/contr/build_doc.rst.

Help - I looked at the documentation, but I don’t understand how …?

We have set up a community forum at https://tenpy.johannes-hauschild.de/, where you can post questions and hopefully find answers. Once you got some experience with TeNPy, you might also be able to contribute to the community and answer some questions yourself ;-) We also use this forum for official announcements, for example when we release a new version.

I found a bug

You might want to check the github issues, if someone else already reported the same problem. To report a new bug, just open a new issue on github. If you already know how to fix it, you can just create a pull request :) If you are not sure whether your problem is a bug or a feature, you can also ask for help in the TeNPy forum.

Citing TeNPy

When you use TeNPy for a work published in an academic journal, you can cite this paper to acknowledge the work put into the development of TeNPy. (The license of TeNPy does not force you, however.) For example, you could add the sentence "Calculations were performed using the TeNPy Library (version X.X.X)\cite{tenpy}." in the acknowledgements or in the main text.

The corresponding BibTex Entry would be the following (the \url{...} requires \usepackage{hyperref} in the LaTeX preamble.):

@Article{tenpy,
    title={{Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy)}},
    author={Johannes Hauschild and Frank Pollmann},
    journal={SciPost Phys. Lect. Notes},
    pages={5},
    year={2018},
    publisher={SciPost},
    doi={10.21468/SciPostPhysLectNotes.5},
    url={https://scipost.org/10.21468/SciPostPhysLectNotes.5},
    archiveprefix={arXiv},
    eprint={1805.00055},
    note={Code available from \url{https://github.com/tenpy/tenpy}},
}

To keep us motivated, you can also include your work into the list of papers using TeNPy.

Acknowledgment

This work was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05- CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program (KC23DAC Topological and Correlated Matter via Tensor Networks and Quantum Monte Carlo).

License

The code is licensed under GPL-v3.0 given in the file LICENSE of the repository, in the online documentation readable at https://tenpy.readthedocs.io/en/latest/install/license.html.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

physics_tenpy-1.0.3.tar.gz (955.8 kB view details)

Uploaded Source

Built Distributions

physics_tenpy-1.0.3-cp312-cp312-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

physics_tenpy-1.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

physics_tenpy-1.0.3-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

physics_tenpy-1.0.3-cp312-cp312-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

physics_tenpy-1.0.3-cp311-cp311-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

physics_tenpy-1.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

physics_tenpy-1.0.3-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

physics_tenpy-1.0.3-cp311-cp311-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

physics_tenpy-1.0.3-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

physics_tenpy-1.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

physics_tenpy-1.0.3-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

physics_tenpy-1.0.3-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

physics_tenpy-1.0.3-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

physics_tenpy-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

physics_tenpy-1.0.3-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

physics_tenpy-1.0.3-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

physics_tenpy-1.0.3-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

physics_tenpy-1.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

physics_tenpy-1.0.3-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

physics_tenpy-1.0.3-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file physics_tenpy-1.0.3.tar.gz.

File metadata

  • Download URL: physics_tenpy-1.0.3.tar.gz
  • Upload date:
  • Size: 955.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for physics_tenpy-1.0.3.tar.gz
Algorithm Hash digest
SHA256 b46156f2e87a198ecd2cecf37d51f2f57c116547d7bec6952badef13b3beb51f
MD5 ebf3f9cd572048a569d134301d4407f4
BLAKE2b-256 d91743a5eb40c867a8676bfc0214e5abc3296cf67ee93faef312d724be4b19f0

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 39e149baf3637eaea813e9ef32f0aef34f197ac3a4eaf3af86d1d8f09f1a3948
MD5 fcfbd00a8e0ca9ade7926635082296e3
BLAKE2b-256 ef5936dc3aca85d4631c516458f98d7f9c1c9368b317b575800a941356397f1e

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ba6a95f538763ea6db9345923196668aea88ba9e4e87d9935cf3fba2d0fd51c
MD5 96827a5f351756535e8f0397cfb9ac6b
BLAKE2b-256 f378cd882ae1be5b76ad9297d3c990853fd2a0f507127e17fde02e654f111d10

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7469dbf6b7bb8ff13f6c6ab6702bf3e3882c4e4f4ab085d915162a66f28987bc
MD5 a93676dbf8c63e7894a8eb8af19793f0
BLAKE2b-256 ee5770c836c99cb233e5d55f21c5a34ead44353660103e19111e5db0a08642e7

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a69ca32d0fa877854c556143632b7b07f3070e2456ccdd403d24f6daa9ff4a0c
MD5 3cecff5a7b41ebb863b46de7746aa4cf
BLAKE2b-256 f1b510a11f97f62fcb6c1ed10c6c38169b46cf53b824afc8e68dca8b201985c8

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5f795a062697fa15fc1e917a2d73fa8fdbac3873e3b87a53c8067932fdd9e0cf
MD5 9714c1c30ce4d22d1cffdfd983a7b8ef
BLAKE2b-256 07559db254eb696c94e01fa22c4f478d433a84c0836e6dc35687e3c590d5cec2

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4b38e6b5553345dc677b6874fab303d11993b35b13be29616cceb748abb9af9
MD5 a511bea5977e67ffc3194e5b3c7ef7dd
BLAKE2b-256 de0441128635b47deca12340c8fcf49899dcec57d2930cfb88955048cb0e6d8e

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe7905b79b2cb7b168bf3a342b449ac223ae1efcf05b42402cd0cc81ee5578d8
MD5 8d6419f6446b6b963f85bfb94b1f94f3
BLAKE2b-256 b168c423a50e1e44529dc54e48a7ec1e95bd5c45aa1204c044bef92a43638591

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b66ef46f5b9884d8d587661c8ef6b724d92792ee4d2e5a6c5a3badd34ff8bea
MD5 2531b9df370ec1506a0fda16308df9dc
BLAKE2b-256 5417c2d51a0721998c9fcc2fb2f3a728caff9e99a79fb73d263de791b10afec5

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c964ac2732ffba7b3a9b7e5eba82f55761cb43e2c061fd179cbab0039f66ee79
MD5 7ab147a40f62d53185f0745f4fdbd6d3
BLAKE2b-256 eb720755f7d3893db517d699f98bdf5af1daf697797376cb586dd1dc0c91a47a

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cde154281bb6cea111a521a375bc59c4ab381c98123ab563ad8c00b12e30fde2
MD5 936b9bccc08fbe7bd6a677cec33740fe
BLAKE2b-256 7a52abcaedf0ef361af132f4921c19b1fd565a596f69fb264606b7016c2a8b83

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9237655b853f8f3cccccbd5e27df1bb477bea1994edd7ba5e4b7c995cc6c8a7a
MD5 ae9444547d9f8b23b5d7e980682733c3
BLAKE2b-256 06329f0553a8f51c728784195286c784f74e0405902a4d7d0f0ec5d4fed684a5

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d7a9b4ba7b3ff90240713b1ec7c6275067e7742e2c6714a0995716b8bda64303
MD5 8763a2682712e8182b83513216e8c519
BLAKE2b-256 87a0bedfcbb02680ab63bfe7d0940ac6c1dab26d621fe30947d3429e0ac8ec51

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 94b6ca90490c94968978ac436771036ba173f512e4fe006046eab6dd9376eac2
MD5 a64506ef956b2641b133447a435e1608
BLAKE2b-256 6b10f5823be8175366442a417cf7c4f0b0e3569b2288c847d0b336bdadb95a53

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef8f5e1b67c8382e2089baaf9e1567ab8b063bbc6986e3e104c908d579a76e09
MD5 7c2d5337612884c1e71ddeb1290dbff3
BLAKE2b-256 319ebc08099c109bee46a3c3f4c82e8b38e41befbc53c002718a54e823348920

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d21b2460eab94d2e2bc76807fe299c74fb0848a0dadba30936717ac0a3aa0d88
MD5 593b6d5b96603f16a61f788bde79fd2d
BLAKE2b-256 fd70c7a3d14704862efedcf4c98e47532738bc48aefe6c7ea591730425d27c43

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c6e1f8941e78c51581b24b552c3d04301bb99fb82913bc1af74786bf7c5e684
MD5 46dceb92fee2291c6448d2462c18a40e
BLAKE2b-256 7023a128a3b3df29a9711acfbc87b22891d11957f03bb3ff6c63559b01c22b1e

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d33ef1eee35578bcaa2267f630a7215d30593de7fc2d007a2d55da2e806bad60
MD5 959487202b9f0483036149ffaefefff4
BLAKE2b-256 3bd10ad523935750b1dec09c58264bdd958809256f26ad1c529d1ef5a79d0b84

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95fec430318bc534e493cbef39c8d1e64f5d7f4146676d2356433e91c9f7b228
MD5 26b2631e9a0ea55ebb837424b06eb415
BLAKE2b-256 0b4647b031c8385c6d4cf61387f008b6e99c8cd8b00c963435b42491566d1bb6

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 219478d2d3e0df0c6a69e2f643365d35084d5113f2fae39538a3add868253ab0
MD5 eb7f74ecc05c42c193d2264180c74454
BLAKE2b-256 8dd64e42951a34617bed726fd5f07b47ede2388fce61565b27b32b2482b51186

See more details on using hashes here.

File details

Details for the file physics_tenpy-1.0.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for physics_tenpy-1.0.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fcfd52bdae52f3f0408d82af8495d1d76c3999e02725ddedf4272109b1226120
MD5 402e8b9c9c5063932a655a34e5b135e9
BLAKE2b-256 6eb02af05b112c3a4bece5115b30720256481dc9e1db4341387a933c55e93e18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page