P(i/y)thon h(i/y)stograms.
Project description
# physt
P(i/y)thon h(i/y)stograms. Inspired (and based on) numpy.histogram, but designed for humans(TM) on steroids(TM).
The goal is to unify different concepts of histograms as occurring in numpy, pandas, matplotlib, ROOT, etc.
and to create one representation that is easily manipulated with from the data point of view and at the same time provides
nice integration into IPython notebook and various plotting options. In short, whatever you want to do with histograms,
**physt** aims to be on your side.
## Simple example
```python
from physt import histogram, h2
heights = [160, 155, 156, 198, 177, 168, 191, 183, 184, 179, 178, 172, 173, 175,
172, 177, 176, 175, 174, 173, 174, 175, 177, 169, 168, 164, 175, 188,
178, 174, 173, 181, 185, 166, 162, 163, 171, 165, 180, 189, 166, 163,
172, 173, 174, 183, 184, 161, 162, 168, 169, 174, 176, 170, 169, 165]
hist = histogram(heights, 10)
hist.plot()
```
![Heights plot](doc/heights.png)
## 2D example
```python
import seaborn as sns
iris = sns.load_dataset('iris')
iris_hist = h2(iris["sepal_length"], iris["sepal_width"], "human", (12, 7), name="Iris")
iris_hist.plot(show_zero=False, cmap=cm.gray_r, show_values=True);
```
![Iris 2D plot](doc/iris-2d.png)
See more in docstring's and notebooks:
- Basic tutorial: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Tutorial.ipynb>
- Binning: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Binning.ipynb>
- Bokeh plots: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Bokeh%20examples.ipynb>
- 2D histograms: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/2D%20Histograms.ipynb>
- Special histograms: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Special%20histograms.ipynb>
- Adaptive histograms: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Adaptive%20histogram.ipynb>
- Use dask for large (not "big") data: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Dask.ipynb>
## Installation
Using pip:
`pip install physt`
Using conda:
`conda install -c janpipek physt`
## Features
### Implemented
* 1D histograms
* 2D histograms(beta)
* ND histograms(beta)
* Some special histograms
- 2D polar coordinates (with plotting)
* Adaptive rebinning for on-line filling of unknown data (beta)
* Memory-effective histogramming of dask arrays (beta)
* Understands any numpy-array-like object
* Keep underflow / overflow
* Basic numeric operations (* / + -)
* Items / slice selection (including mask arrays)
* Add new values (fill, fill_n)
* Cumulative values, densities
* Simple statistics for original data (mean, std, sem)
* Simple plotting (matplotlib, bokeh)
- 2D support experimental
* Algorithms for optimized binning
- human-friendly
- mathematical
* IO, conversions
- I/O xarray.DataSet
- I/O JSON
- O pandas.DataFrame
### Planned
* Rebinning
- using reference to original data?
- merging bins
* Statistics (based on original data)?
* Stacked histograms (with names)
* More plotting backends
### Not planned
* Kernel density estimates: use your favourite statistics package (like `seaborn`)
## Dependencies
- Python 3.5 targeted, 2.7 passes unit tests
- numpy
- (optional) matplotlib - simple output
- (optional) bokeh - simple output
- (optional) xarray - I/O
- (optional) astropy - additional binning algorithms
- (testing) py.test, pandas
- (docs) sphinx, sphinx_rtd_theme, ipython
P(i/y)thon h(i/y)stograms. Inspired (and based on) numpy.histogram, but designed for humans(TM) on steroids(TM).
The goal is to unify different concepts of histograms as occurring in numpy, pandas, matplotlib, ROOT, etc.
and to create one representation that is easily manipulated with from the data point of view and at the same time provides
nice integration into IPython notebook and various plotting options. In short, whatever you want to do with histograms,
**physt** aims to be on your side.
## Simple example
```python
from physt import histogram, h2
heights = [160, 155, 156, 198, 177, 168, 191, 183, 184, 179, 178, 172, 173, 175,
172, 177, 176, 175, 174, 173, 174, 175, 177, 169, 168, 164, 175, 188,
178, 174, 173, 181, 185, 166, 162, 163, 171, 165, 180, 189, 166, 163,
172, 173, 174, 183, 184, 161, 162, 168, 169, 174, 176, 170, 169, 165]
hist = histogram(heights, 10)
hist.plot()
```
![Heights plot](doc/heights.png)
## 2D example
```python
import seaborn as sns
iris = sns.load_dataset('iris')
iris_hist = h2(iris["sepal_length"], iris["sepal_width"], "human", (12, 7), name="Iris")
iris_hist.plot(show_zero=False, cmap=cm.gray_r, show_values=True);
```
![Iris 2D plot](doc/iris-2d.png)
See more in docstring's and notebooks:
- Basic tutorial: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Tutorial.ipynb>
- Binning: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Binning.ipynb>
- Bokeh plots: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Bokeh%20examples.ipynb>
- 2D histograms: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/2D%20Histograms.ipynb>
- Special histograms: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Special%20histograms.ipynb>
- Adaptive histograms: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Adaptive%20histogram.ipynb>
- Use dask for large (not "big") data: <http://nbviewer.jupyter.org/github/janpipek/physt/blob/master/doc/Dask.ipynb>
## Installation
Using pip:
`pip install physt`
Using conda:
`conda install -c janpipek physt`
## Features
### Implemented
* 1D histograms
* 2D histograms(beta)
* ND histograms(beta)
* Some special histograms
- 2D polar coordinates (with plotting)
* Adaptive rebinning for on-line filling of unknown data (beta)
* Memory-effective histogramming of dask arrays (beta)
* Understands any numpy-array-like object
* Keep underflow / overflow
* Basic numeric operations (* / + -)
* Items / slice selection (including mask arrays)
* Add new values (fill, fill_n)
* Cumulative values, densities
* Simple statistics for original data (mean, std, sem)
* Simple plotting (matplotlib, bokeh)
- 2D support experimental
* Algorithms for optimized binning
- human-friendly
- mathematical
* IO, conversions
- I/O xarray.DataSet
- I/O JSON
- O pandas.DataFrame
### Planned
* Rebinning
- using reference to original data?
- merging bins
* Statistics (based on original data)?
* Stacked histograms (with names)
* More plotting backends
### Not planned
* Kernel density estimates: use your favourite statistics package (like `seaborn`)
## Dependencies
- Python 3.5 targeted, 2.7 passes unit tests
- numpy
- (optional) matplotlib - simple output
- (optional) bokeh - simple output
- (optional) xarray - I/O
- (optional) astropy - additional binning algorithms
- (testing) py.test, pandas
- (docs) sphinx, sphinx_rtd_theme, ipython
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
physt-0.3.12.tar.gz
(35.0 kB
view hashes)