Skip to main content

A package to make isoconversional computations for non-isothermal kinetics

Project description

pICNIK

pICNIK is a module with implemented isoconversional computations for non-isothermal kinetcis.
The package has an object oriented interface with two classes: DataExtraction and ActivationEnergy, with the purpose of managing the experimental data and computing activation energies with the next isoconversional methods:

  • Ozawa-Flynn-Wall (OFW)\
  • Kissinger-Akahira-Sunose (KAS)\
  • Friedman (Fr)\
  • Vyazovkin (Vy)\
  • Advanced method of Vyazovkin (aVy)\

The repository consist in the following directories:

  • picnik.py. Contains the package
  • examples. Contains a script (example.py) which executes some commmands of picnik in order to ilustrate the suggested procedure. And three more directories which contain data to use with example.py:
    • Constant_E. Simulated TGA data for a process with constant activation energy.
    • Two_Steps. Simulated TGA data for a process with two steps, each with constant activation energy.
    • Variable_E. Simulated TGA data for a process with variable activation energy.

Installation

picnik can be installed from PyPi with pip: $ pip install picnik

DataExtractioin class

It has methods to open the .csv files containing the thermogravimetric data as pandas DataFrames for the experimental data, computing and adding the conversion for the process and the conversion rate as columns in the DataFrame.
The class also has methods for creating isoconversional DataFrames of time, temperature, conversion rates (for the OFW, KAS, Fr and Vy methods) and also "advanced" DataFrames of time and temperature (for the aVy method).
Example:

import picnik as pnk

files = ["HR_1.csv","HR_2.csv",...,"HR_n.csv"]
xtr = pnk.DataExtraction()
Beta, T0 = xtr.read_files(files,encoding)
xtr.Conversion(T0,Tf)
TDF,tDF,dDF,TaDF,taDF = xtr.Isoconversion(advanced=(bool))

The DataFrames are also stored as attributes of the xtr object

ActivationEnergy class

This class has methods to compute the activation energies with the DataFrames created with the xtr object along with its associated error. The Fr(),OFW(),KAS() methods return a tuple of three, two and two elements respectively. The first element of the tuples is a numpy array containing the isoconversional activation energies. The second element contains the associated error within a 95% confidence interval. The third element in the case of the Fr() method is a numpy array containing the intercept of the Friedman method. The Vy() and aVy() only return a numpy array of isoconversional activation energies, the error associated to this methods are obtained with the Vy_error() and aVy_error() methods Example:

ace = pnk.ActivationEnergy(Beta,
                           T0,
                           TDF,
                           dDF,
                           TaDF,
                           taDF)
E_Fr, E_OFW, E_KAS, E_Vy, E_aVy = ace.Fr(), ace.OFW(), ace.KAS(), ace.Vy(), ace.aVy()

The constructor of this class needs six arguments, a list/array/tuple of Temperature rates, a list/array of initial temperatures and four DataFrames: one of temperature, one of convertsion rates and two "advanced" one of temperature and the other of time.

Exporting results

The DataExtractionclass also has a method to export the results as .csv or .xlsx files:

xtr.export_Ea(E_Fr = (Bool), 
              E_OFW = (Bool), 
              E_KAS = (Bool), 
              E_Vy = (Bool), 
              E_aVy = (Bool),
              file_t="xlsx" )

Set to True the method which values want to be exported. Set file_t to xlsx to export results as as an Excel spreadsheet or to csv to export results as a CSV file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PICNIK-0.1.3.tar.gz (18.7 kB view details)

Uploaded Source

Built Distribution

PICNIK-0.1.3-py3-none-any.whl (17.6 kB view details)

Uploaded Python 3

File details

Details for the file PICNIK-0.1.3.tar.gz.

File metadata

  • Download URL: PICNIK-0.1.3.tar.gz
  • Upload date:
  • Size: 18.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.8.10 Linux/5.4.0-113-generic

File hashes

Hashes for PICNIK-0.1.3.tar.gz
Algorithm Hash digest
SHA256 b9b5e13af4061a7156b5a290ad66c9ee2fbea230a956a2eed06fe58852c9e46a
MD5 745f26d90dca5f367d21382cd964673c
BLAKE2b-256 556fb6b40d30ea6d9099fd2fa104a7e2c06d6e4be61bc22abfd680e52f3e9928

See more details on using hashes here.

File details

Details for the file PICNIK-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: PICNIK-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 17.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.8.10 Linux/5.4.0-113-generic

File hashes

Hashes for PICNIK-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 b37caddb0fc2aff25a12da3d10a515ff2ebd10252ec58df5f4ee9f6984c4a1fc
MD5 1cc0e474061ef11e04634dd5df552371
BLAKE2b-256 703685e78a45462c7715e6df07495f5d6b0d6849f75486f74b27117a58e69731

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page