Skip to main content

A package to make isoconversional computations for non-isothermal kinetics

Project description

pICNIK

pICNIK is a module with implemented isoconversional computations for non-isothermal kinetcis.
The package has an object oriented interface with two classes: DataExtraction and ActivationEnergy, with the purpose of managing the experimental data and computing activation energies with the next isoconversional methods:

  • Ozawa-Flynn-Wall (OFW)\
  • Kissinger-Akahira-Sunose (KAS)\
  • Friedman (Fr)\
  • Vyazovkin (Vy)\
  • Advanced method of Vyazovkin (aVy)\

The repository consist in the following directories:

  • picnik.py. Contains the package
  • examples. Contains a script (example.py) which executes some commmands of picnik in order to ilustrate the suggested procedure. And three more directories which contain data to use with example.py:
    • Constant_E. Simulated TGA data for a process with constant activation energy.
    • Two_Steps. Simulated TGA data for a process with two steps, each with constant activation energy.
    • Variable_E. Simulated TGA data for a process with variable activation energy.

Installation

picnik can be installed from PyPi with pip: $ pip install picnik

DataExtractioin class

It has methods to open the .csv files containing the thermogravimetric data as pandas DataFrames for the experimental data, computing and adding the conversion for the process and the conversion rate as columns in the DataFrame.
The class also has methods for creating isoconversional DataFrames of time, temperature, conversion rates (for the OFW, KAS, Fr and Vy methods) and also "advanced" DataFrames of time and temperature (for the aVy method).
Example:

import picnik as pnk

files = ["HR_1.csv","HR_2.csv",...,"HR_n.csv"]
xtr = pnk.DataExtraction()
Beta, T0 = xtr.read_files(files,encoding)
xtr.Conversion(T0,Tf)
TDF,tDF,dDF,TaDF,taDF = xtr.Isoconversion(advanced=(bool))

The DataFrames are also stored as attributes of the xtr object

ActivationEnergy class

This class has methods to compute the activation energies with the DataFrames created with the xtr object along with its associated error. The Fr(),OFW(),KAS() methods return a tuple of three, two and two elements respectively. The first element of the tuples is a numpy array containing the isoconversional activation energies. The second element contains the associated error within a 95% confidence interval. The third element in the case of the Fr() method is a numpy array containing the intercept of the Friedman method. The Vy() and aVy() only return a numpy array of isoconversional activation energies, the error associated to this methods are obtained with the Vy_error() and aVy_error() methods Example:

ace = pnk.ActivationEnergy(Beta,
                           T0,
                           TDF,
                           dDF,
                           TaDF,
                           taDF)
E_Fr, E_OFW, E_KAS, E_Vy, E_aVy = ace.Fr(), ace.OFW(), ace.KAS(), ace.Vy(), ace.aVy()

The constructor of this class needs six arguments, a list/array/tuple of Temperature rates, a list/array of initial temperatures and four DataFrames: one of temperature, one of convertsion rates and two "advanced" one of temperature and the other of time.

Exporting results

The DataExtractionclass also has a method to export the results as .csv or .xlsx files:

xtr.export_Ea(E_Fr = (Bool), 
              E_OFW = (Bool), 
              E_KAS = (Bool), 
              E_Vy = (Bool), 
              E_aVy = (Bool),
              file_t="xlsx" )

Set to True the method which values want to be exported. Set file_t to xlsx to export results as as an Excel spreadsheet or to csv to export results as a CSV file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PICNIK-0.1.6.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

PICNIK-0.1.6-py3-none-any.whl (17.6 kB view details)

Uploaded Python 3

File details

Details for the file PICNIK-0.1.6.tar.gz.

File metadata

  • Download URL: PICNIK-0.1.6.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.8.10 Linux/5.4.0-113-generic

File hashes

Hashes for PICNIK-0.1.6.tar.gz
Algorithm Hash digest
SHA256 fbf5cc42b232ec9e1faf842b0e6a0f5994d9856b2d749054fa3b36b85319a8ae
MD5 f08d761824a49e0b4af8bfdb530258c2
BLAKE2b-256 7a7629c1bcaf654d270d13e6edf96e2610ebb669b9f4b3b5f490b6eee7a4fd25

See more details on using hashes here.

File details

Details for the file PICNIK-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: PICNIK-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 17.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.8.10 Linux/5.4.0-113-generic

File hashes

Hashes for PICNIK-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 22e6bbf7d92cb068816a37c84ac89aaae3997b9343828def20352ac91bacd486
MD5 a74d8280aab43c6cfea0eb087c161994
BLAKE2b-256 ded90003c8e3ad8246a8b7bb815194604ad4f7e9d668109e7e52cd1b9db1ba2b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page