Skip to main content

picoLLM Inference Engine

Project description

picoLLM Inference Engine Python Binding

Made in Vancouver, Canada by Picovoice

picoLLM Inference Engine

picoLLM Inference Engine is a highly accurate and cross-platform SDK optimized for running compressed large language models. picoLLM Inference Engine is:

  • Accurate; picoLLM Compression improves GPTQ by significant margins
  • Private; LLM inference runs 100% locally.
  • Cross-Platform
  • Runs on CPU and GPU
  • Free for open-weight models

Compatibility

  • Python 3.8+
  • Runs on Linux (x86_64), macOS (arm64, x86_64), Windows (x86_64), and Raspberry Pi (5 and 4).

Installation

pip3 install picollm

Models

picoLLM Inference Engine supports the following open-weight models. The models are on Picovoice Console.

  • Gemma
    • gemma-2b
    • gemma-2b-it
    • gemma-7b
    • gemma-7b-it
  • Llama-2
    • llama-2-7b
    • llama-2-7b-chat
    • llama-2-13b
    • llama-2-13b-chat
    • llama-2-70b
    • llama-2-70b-chat
  • Llama-3
    • llama-3-8b
    • llama-3-8b-instruct
    • llama-3-70b
    • llama-3-70b-instruct
  • Mistral
    • mistral-7b-v0.1
    • mistral-7b-instruct-v0.1
    • mistral-7b-instruct-v0.2
  • Mixtral
    • mixtral-8x7b-v0.1
    • mixtral-8x7b-instruct-v0.1
  • Phi-2
    • phi2
  • Phi-3
    • phi3
  • Phi-3.5
    • phi3.5

AccessKey

AccessKey is your authentication and authorization token for deploying Picovoice SDKs, including picoLLM. Anyone who is using Picovoice needs to have a valid AccessKey. You must keep your AccessKey secret. You would need internet connectivity to validate your AccessKey with Picovoice license servers even though the LLM inference is running 100% offline and completely free for open-weight models. Everyone who signs up for Picovoice Console receives a unique AccessKey.

Usage

Create an instance of the engine and generate a prompt completion:

import picollm

pllm = picollm.create(
    access_key='${ACCESS_KEY}',
    model_path='${MODEL_PATH}')

res = pllm.generate(prompt='${PROMPT}')
print(res.completion)

Replace ${ACCESS_KEY} with yours obtained from Picovoice Console, ${MODEL_PATH} with the path to a model file downloaded from Picovoice Console, and ${PROMPT} with a prompt string.

Instruction-tuned models (e.g., llama-3-8b-instruct, llama-2-7b-chat, and gemma-2b-it) have a specific chat template. You can either directly format the prompt or use a dialog helper:

dialog = pllm.get_dialog()
dialog.add_human_request(prompt)

res = pllm.generate(prompt=dialog.prompt())
dialog.add_llm_response(res.completion)
print(res.completion)

To interrupt completion generation before it has finished:

pllm.interrupt()

Finally, when done, be sure to release the resources explicitly:

pllm.release()

Demos

picollmdemo provides command-line utilities for LLM completion and chat using picoLLM.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

picollm-1.2.0.tar.gz (11.1 MB view details)

Uploaded Source

Built Distribution

picollm-1.2.0-py3-none-any.whl (11.1 MB view details)

Uploaded Python 3

File details

Details for the file picollm-1.2.0.tar.gz.

File metadata

  • Download URL: picollm-1.2.0.tar.gz
  • Upload date:
  • Size: 11.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for picollm-1.2.0.tar.gz
Algorithm Hash digest
SHA256 5d9ab1a7a234e908eb9b6ca3ba3ed3401a98016a9d85fae6d0eb14a7a1020f63
MD5 69c9bd36c8a722e2b0b4d09f2999836d
BLAKE2b-256 de99f8f4bf79d8de39f614591063193046f3ac5733f63fff057caee3fb49cb07

See more details on using hashes here.

File details

Details for the file picollm-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: picollm-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 11.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for picollm-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3a6753e9718aca22fbf8caf506cda05a0c093a82064e20e957d6926ddcee5d41
MD5 c92c1d509c18bdae9ddce93c3721a1c5
BLAKE2b-256 f236bf414e8ed414b123e28fcd5cde41ee3a94cb50b819a05305b632362af97d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page