Picwish Photo Enhancer
Project description
PicWish API for Python 🎨✨
Enhance, generate, and process images without tokens, accounts, or watermarks, and enjoy unlimited usage!
Features
- ✅ AI Text-to-Image Generation: Create images from text prompts with customizable themes, sizes, and quality.
- ✅ Image Enhancement: Improve image quality without watermark.
- ✅ Background Removal: Remove background from images.
- ✅ OCR (Optical Character Recognition): Extract text from images with support for multiple languages and various output formats.
Installation
To get started, install the picwish
package using pip:
pip install picwish
Quick Examples 🚀
1. AI Text-to-Image Generation 🤖
Generate images based on a text prompt with customizable settings:
import asyncio
from picwish import PicWish, T2ITheme, T2IQuality
async def main():
picwish = PicWish()
# Generate images from text prompt
results = await picwish.text_to_image(
prompt='A girl',
theme=T2ITheme.ANIME,
width=616,
height=616,
batch_size=4,
quality=T2IQuality.HIGH
)
for result in results:
await result.download(f'{result.id}.png')
asyncio.run(main())
2. Image Enhancement
Enhance the quality of an image without a watermark:
import asyncio
from picwish import PicWish
async def main():
picwish = PicWish()
# Enhance an image
enhanced_image = await picwish.enhance('/path/to/input.jpg')
await enhanced_image.download('enhanced_output.jpg')
asyncio.run(main())
3. Background Removal
Remove the background from an image:
import asyncio
from picwish import PicWish
async def main():
picwish = PicWish()
# Remove background from an image
background_removed_image = await picwish.remove_background('/path/to/input.jpg')
await background_removed_image.download('background_removed_output.png')
asyncio.run(main())
4. OCR (Optical Character Recognition)
Extract text from images with support for multiple languages and output formats:
import asyncio
from picwish import PicWish, OCRFormat
async def main():
picwish = PicWish()
ocr_result = await picwish.ocr(
'input.jpg',
format=OCRFormat.TXT
)
print(await ocr_result.text())
# -----------------
# Download as PNG
ocr_result = await picwish.ocr(
'input.jpg',
format=OCRFormat.PDF
)
print(await ocr_result.download('result.pdf'))
asyncio.run(main())
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
picwish-0.4.1.tar.gz
(10.4 kB
view details)
Built Distribution
picwish-0.4.1-py3-none-any.whl
(10.7 kB
view details)
File details
Details for the file picwish-0.4.1.tar.gz
.
File metadata
- Download URL: picwish-0.4.1.tar.gz
- Upload date:
- Size: 10.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f02bd8f74bc280aa0b02da05a5b8462705be3b9c88292c1eb6c39d14c6b6bf5 |
|
MD5 | 00e57420b81901ae8f30a7e5277aefe2 |
|
BLAKE2b-256 | bbb739e92de6d618bfc711f5a9a2b01e69ef2784d44d323c769ae733930a051d |
File details
Details for the file picwish-0.4.1-py3-none-any.whl
.
File metadata
- Download URL: picwish-0.4.1-py3-none-any.whl
- Upload date:
- Size: 10.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4b87ffd9adf5a32d3f30e1d4a5850ffa04c01f9bd6ccbb00d34567b5e8517d9 |
|
MD5 | 5ecc2b18ac7213590bf523f4bb5ad218 |
|
BLAKE2b-256 | a459007f736fcd71f8d89ec4b25cbfe9c3b37f633a20c2348e3568b328d1bc1a |