Picwish Photo Enhancer
Project description
PicWish API for Python 🎨✨
Enhance, generate, and process images without tokens, accounts, or watermarks, and enjoy unlimited usage!
Features
- ✅ AI Text-to-Image Generation: Create images from text prompts with customizable themes, sizes, and quality.
- ✅ Image Enhancement: Improve image quality without watermark.
- ✅ Background Removal: Remove background from images.
- ✅ OCR (Optical Character Recognition): Extract text from images with support for multiple languages and various output formats.
Installation
To get started, install the picwish
package using pip:
pip install picwish
Quick Examples 🚀
1. AI Text-to-Image Generation 🤖
Generate images based on a text prompt with customizable settings:
import asyncio
from picwish import PicWish, T2ITheme, T2IQuality, T2ISize
async def main():
picwish = PicWish()
# Generate images from text prompt
results = await picwish.text_to_image(
prompt='A girl',
theme=T2ITheme.ANIME,
size=T2ISize.FHD_1_1,
batch_size=4,
quality=T2IQuality.HIGH
)
for result in results:
await result.download(f'{result.id}.png')
asyncio.run(main())
2. Image Enhancement
Enhance the quality of an image without a watermark:
import asyncio
from picwish import PicWish
async def main():
picwish = PicWish()
# Enhance an image
enhanced_image = await picwish.enhance('/path/to/input.jpg')
await enhanced_image.download('enhanced_output.jpg')
asyncio.run(main())
3. Background Removal
Remove the background from an image:
import asyncio
from picwish import PicWish
async def main():
picwish = PicWish()
# Remove background from an image
background_removed_image = await picwish.remove_background('/path/to/input.jpg')
await background_removed_image.download('background_removed_output.png')
asyncio.run(main())
4. OCR (Optical Character Recognition)
Extract text from images with support for multiple languages and output formats:
import asyncio
from picwish import PicWish, OCRFormat
async def main():
picwish = PicWish()
ocr_result = await picwish.ocr(
'input.jpg',
format=OCRFormat.TXT
)
print(await ocr_result.text())
# -----------------
# Download as PNG
ocr_result = await picwish.ocr(
'input.jpg',
format=OCRFormat.PDF
)
print(await ocr_result.download('result.pdf'))
asyncio.run(main())
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
picwish-0.4.5.tar.gz
(10.9 kB
view details)
Built Distribution
picwish-0.4.5-py3-none-any.whl
(11.4 kB
view details)
File details
Details for the file picwish-0.4.5.tar.gz
.
File metadata
- Download URL: picwish-0.4.5.tar.gz
- Upload date:
- Size: 10.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 310422232b18def2c222e38868b7d503ff1948eff0141a1c32b58cdccc00bd91 |
|
MD5 | 569cec1c7e26a8390085d6ab0dd6c8f3 |
|
BLAKE2b-256 | c929087e129e8e6459effb23b388ed3c7de388e06ef2b54fb808623c3fe3b144 |
File details
Details for the file picwish-0.4.5-py3-none-any.whl
.
File metadata
- Download URL: picwish-0.4.5-py3-none-any.whl
- Upload date:
- Size: 11.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9259ca23b57acdf664cd82a23db6795303fe870529071f4554ceff183cdd2daf |
|
MD5 | f12a7ffcc824f4d80f2ead5875229e2b |
|
BLAKE2b-256 | e3ffb60523b819ca6ecf702619616e219f955f0cd3b8c2e599ac5b08674359e1 |