Skip to main content

Extension for nlp-pie package

Project description

Pie Extended

Build Status Coverage Status PyPI

Extension for pie to include taggers with their models and pre/postprocessors.

Pie is a wonderful tool to train models. And most of the time, it will be enough. What pie_extended is proposing here is to provide you with the necessary tools to share your models with customized pre- and post-processing.

The current system provide an easier access to adding customized:

  • normalization of your text,
  • sentence tokenization,
  • word tokenization,
  • disambiguation,
  • output formatting

Install

To install, simply do pip install pie-extended. Then, look at all available models.

Run on terminal

But on top of that, it provides a quick and easy way to use others models ! For example, in a shell :

pie-extended download lasla
pie-extended install-addons lasla
pie-extended tag laslsa your_file.txt

will give you access to all you need !

Python API

You can run the lemmatizer in your own scripts and retrieve token annotations as dictionaries:

from typing import List
from pie_extended.cli.sub import get_tagger, get_model, download

# In case you need to download
do_download = False
if do_download:
    for dl in download("lasla"):
        x = 1

# model_path allows you to override the model loaded by another .tar
model_name = "lasla"
tagger = get_tagger(model_name, batch_size=256, device="cpu", model_path=None)

sentences: List[str] = ["Lorem ipsum dolor sit amet, consectetur adipiscing elit. "]
# Get the main object from the model (: data iterator + postprocesor
from pie_extended.models.lasla.imports import get_iterator_and_processor
for sentence_group in sentences:
    iterator, processor = get_iterator_and_processor()
    print(tagger.tag_str(sentence_group, iterator=iterator, processor=processor) )

will result in

[{'form': 'lorem', 'lemma': 'lor', 'POS': 'NOMcom', 'morph': 'Case=Acc|Numb=Sing', 'treated': 'lorem'},
 {'form': 'ipsum', 'lemma': 'ipse', 'POS': 'PROdem', 'morph': 'Case=Acc|Numb=Sing', 'treated': 'ipsum'},
 {'form': 'dolor', 'lemma': 'dolor', 'POS': 'NOMcom', 'morph': 'Case=Nom|Numb=Sing', 'treated': 'dolor'},
 {'form': 'sit', 'lemma': 'sum1', 'POS': 'VER', 'morph': 'Numb=Sing|Mood=Sub|Tense=Pres|Voice=Act|Person=3',
  'treated': 'sit'},
 {'form': 'amet', 'lemma': 'amo', 'POS': 'VER', 'morph': 'Numb=Sing|Mood=Sub|Tense=Pres|Voice=Act|Person=3',
  'treated': 'amet'}, {'form': ',', 'lemma': ',', 'pos': 'PUNC', 'morph': 'MORPH=empty', 'treated': ','},
 {'form': 'consectetur', 'lemma': 'consector2', 'POS': 'VER',
  'morph': 'Numb=Sing|Mood=Sub|Tense=Pres|Voice=Dep|Person=3', 'treated': 'consectetur'},
 {'form': 'adipiscing', 'lemma': 'adipiscor', 'POS': 'VER', 'morph': 'Tense=Pres|Voice=Dep', 'treated': 'adipiscing'},
 {'form': 'elit', 'lemma': 'elio', 'POS': 'VER', 'morph': 'Numb=Sing|Mood=Ind|Tense=Pres|Voice=Act|Person=3',
  'treated': 'elit'}, {'form': '.', 'lemma': '.', 'pos': 'PUNC', 'morph': 'MORPH=empty', 'treated': '.'}]

Add a model

  • Create a package in ./pie_extended/models/. Exemple: foo.
  • Add the name of the package in ./pie_extended/models/__init__.py in the variable modules.
  • In the module pie_extended.models.foo, we should find the following variable:
    • Models : a string with filenames and tasks for Pie.
    • DESC: a METADATA object that bears information about the model
    • DOWNLOADS: A list of file to download.
from pie_extended.utils import Metadata, File, get_path

DESC = Metadata(
    "Foo"
    "language",
    ["Author 1", "Author 2"],
    "A readable description",
    "A link to more information"
)

DOWNLOADS = [
    File("/a/link/to/a/file", "local_name_of_the_file.tar")
]


Models = "<{},task1,task2><{},lemma,pos>".format(
    get_path("foo", "local_name_of_the_file.tar")
)
  • In the module pie_extended.models.foo.imports, we should find the following content:
    1. get_iterator_and_processor: a function that returns a DataIterator and a Processor
    2. (optionally) addons: a function that installs add-ons
    3. (optionally) Disambiguator: a disambiguator instance (or an object creator that returns one)

Check for a simple example in pie_extended.models.fro.imports and a more complex one in pie_extended.models.lasla.imports

Warning

This is an extremely early build, subject to change here and there. But it is functional !

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pie_extended-0.0.13.tar.gz (29.4 kB view details)

Uploaded Source

Built Distribution

pie_extended-0.0.13-py2.py3-none-any.whl (47.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pie_extended-0.0.13.tar.gz.

File metadata

  • Download URL: pie_extended-0.0.13.tar.gz
  • Upload date:
  • Size: 29.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.23.3 CPython/3.7.5

File hashes

Hashes for pie_extended-0.0.13.tar.gz
Algorithm Hash digest
SHA256 2e46bfe504277ffdfc4c5c123b73fee22f1cf8dbe04c5ffccfb52056c1f32b96
MD5 96e01ed3cb00c542002123d21e5da1a5
BLAKE2b-256 1fa86f0e2d7bcc3411f861e770d924054e12d05df988381290d6d9a581854018

See more details on using hashes here.

File details

Details for the file pie_extended-0.0.13-py2.py3-none-any.whl.

File metadata

  • Download URL: pie_extended-0.0.13-py2.py3-none-any.whl
  • Upload date:
  • Size: 47.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.23.3 CPython/3.7.5

File hashes

Hashes for pie_extended-0.0.13-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 325739a1d16aef2029e7bff6ec7b83e612855fed85bede760fb808a06983cc51
MD5 e25443570106ce15331e22f08d367865
BLAKE2b-256 9e5f06a0b95a3cb6c3f65c4292619c5a1215a0773ca56a5d6861c3a96a8c5ef8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page