Skip to main content

Predict categories based domain names and it's content

Project description

https://img.shields.io/pypi/v/piedomains.svg Documentation Status https://pepy.tech/badge/piedomains

The package infers the kind of content hosted by domain using the domain name, and the content, and screenshot from the homepage.

We use domain category labels from Shallalist and build our own training dataset by scraping and taking screenshots of the homepage. The final dataset used to train the model is posted on the Harvard Dataverse. Python notebooks used to build the models can be found here and the model files can be found here

Installation

We strongly recommend installing piedomains inside a Python virtual environment (see venv documentation)

pip install piedomains

General API

  1. domain.pred_shalla_cat_with_text(input)

  • What it does:

  • Predicts the kind of content hosted by a domain based on domain name and HTML of the homepage.

  • The function can use locally stored HTML files or fetch fresh HTML files.

  • If you specify a local folder, the function will look for HTML files corresponding to the domain.

  • The HTML files must be stored as domainname.html.

  • The function returns a pandas dataframe with label and corresponding probabilities.

  • Inputs:

  • input: list of domains. Either input or html_path must be specified.

  • html_path: path to the folder where the HTMLs are stored. Either input or html_path must be specified.

  • latest: use the latest model. Default is True.

  • Note: The function will by default look for a html folder on the same level as model files.

  • Output:

  • Returns a pandas dataframe with label and probabilities

  • Sample usage:

    from piedomains import domain
    domains = [
        "forbes.com",
        "xvideos.com",
        "last.fm",
        "facebook.com",
        "bellesa.co",
        "marketwatch.com"
    ]
    # with only domains
    result = domain.pred_shalla_cat_with_text(domains)
    # with html path where htmls are stored (offline mode)
    result = domain.pred_shalla_cat_with_text(html_path="path/to/htmls")
    # with domains and html path, html_path will be used to store htmls
    result = domain.pred_shalla_cat_with_text(domains, html_path="path/to/htmls")
    print(result)
  • Sample output:

                domain  text_label  text_prob  \
    0      xvideos.com        porn   0.918919
    1  marketwatch.com     finance   0.627119
    2       forbes.com        news   0.575000
    3       bellesa.co        porn   0.962932
    4     facebook.com  recreation   0.200815
    5          last.fm       music   0.229545
    
                                      text_domain_probs  used_domain_text  \
    0  {'adv': 0.001249639527059502, 'aggressive': 9....              True
    1  {'adv': 0.001249639527059502, 'aggressive': 9....              True
    2  {'adv': 0.010590500641848523, 'aggressive': 0....              True
    3  {'adv': 0.00021545223423966907, 'aggressive': ...              True
    4  {'adv': 0.006381039197812215, 'aggressive': 0....              True
    5  {'adv': 0.002181818181818182, 'aggressive': 0....              True
    
                                          extracted_text
    0  xvideos furry ass history mature rough redhead...
    1  marketwatch gold stocks video chrome economy v...
    2  forbes featured leadership watch money breakin...
    3  bellesa audio vixen sensual passionate orgy ki...
    4    facebook watch messenger portal bulletin oculus
    5  last twitter music reset company back merchand...
  1. domain.pred_shalla_cat_with_images(input)

  • What it does:

  • Predicts the kind of content hosted by a domain based on screenshot of the homepage.

  • The function can use locally stored screenshots files or fetch fresh screenshots of the homepage.

  • If you specify a local folder, the function will look for jpegs corresponding to the domain.

  • The screenshots must be stored as domainname.jpg.

  • The function returns a pandas dataframe with label and corresponding probabilities.

  • Inputs:

  • input: list of domains. Either input or image_path must be specified.

  • image_path: path to the folder where the screenshots are stored. Either input or image_path must be specified.

  • latest: use the latest model. Default is True.

  • Note: The function will by default look for a images` folder on the same level as model files.

  • Output:

  • Returns panda dataframe with label and probabilities

  • Sample usage:

    from piedomains import domain
    domains = [
        "forbes.com",
        "xvideos.com",
        "last.fm",
        "facebook.com",
        "bellesa.co",
        "marketwatch.com"
    ]
    # with only domains
    result = domain.pred_shalla_cat_with_images(domains)
    # with image path where images are stored (offline mode)
    result = domain.pred_shalla_cat_with_images(image_path="path/to/images")
    # with domains and image path, image_path will be used to store images
    result = domain.pred_shalla_cat_with_images(domains, image_path="path/to/images")
    print(result)
  • Sample output:

                domain image_label  image_prob  \
    0       bellesa.co    shopping    0.366663
    1     facebook.com        porn    0.284601
    2  marketwatch.com  recreation    0.367953
    3      xvideos.com        porn    0.916550
    4       forbes.com  recreation    0.415165
    5          last.fm    shopping    0.303097
    
                                      image_domain_probs  used_domain_screenshot
    0  {'adv': 0.0009261096129193902, 'aggressive': 3...                    True
    1  {'adv': 0.030470917001366615, 'aggressive': 0....                    True
    2  {'adv': 0.006861348636448383, 'aggressive': 0....                    True
    3  {'adv': 0.0004964823601767421, 'aggressive': 0...                    True
    4  {'adv': 0.0016061498317867517, 'aggressive': 8...                    True
    5  {'adv': 0.007956285960972309, 'aggressive': 0....                    True
  1. domain.pred_shalla_cat(input)

  • What it does:

  • Predicts the kind of content hosted by a domain based on screenshot of the homepage.

  • The function can use locally stored screenshots and HTMLs or fetch fresh data.

  • If you specify local folders, the function will look for jpegs corresponding to the domain.

  • The screenshots must be stored as domainname.jpg.

  • The HTML files must be stored as domainname.html.

  • The function returns a pandas dataframe with label and corresponding probabilities.

  • Inputs:

  • input: list of domains. Either input or html_path must be specified.

  • html_path: path to the folder where the screenshots are stored. Either input, image_path, or html_path must be specified.

  • image_path: path to the folder where the screenshots are stored. Either input, image_path, or html_path must be specified.

  • latest: use the latest model. Default is True.

  • Note: The function will by default look for a html folder on the same level as model files.

  • Note: The function will by default look for a images folder on the same level as model files.

  • Output

  • Returns panda dataframe with label and probabilities

  • Sample usage:

    from piedomains import domain
    domains = [
        "forbes.com",
        "xvideos.com",
        "last.fm",
        "facebook.com",
        "bellesa.co",
        "marketwatch.com"
    ]
    # with only domains
    result = domain.pred_shalla_cat(domains)
    # with html path where htmls are stored (offline mode)
    result = domain.pred_shalla_cat(html_path="path/to/htmls")
    # with image path where images are stored (offline mode)
    result = domain.pred_shalla_cat(image_path="path/to/images")
    print(result)
  • Sample output:

                  domain  text_label  text_prob  \
    0      xvideos.com        porn   0.918919
    1  marketwatch.com     finance   0.627119
    2       forbes.com        news   0.575000
    3       bellesa.co        porn   0.962932
    4     facebook.com  recreation   0.200815
    5          last.fm       music   0.229545
    
                                      text_domain_probs  used_domain_text  \
    0  {'adv': 0.001249639527059502, 'aggressive': 9....              True
    1  {'adv': 0.001249639527059502, 'aggressive': 9....              True
    2  {'adv': 0.010590500641848523, 'aggressive': 0....              True
    3  {'adv': 0.00021545223423966907, 'aggressive': ...              True
    4  {'adv': 0.006381039197812215, 'aggressive': 0....              True
    5  {'adv': 0.002181818181818182, 'aggressive': 0....              True
    
                                          extracted_text image_label  image_prob  \
    0  xvideos furry ass history mature rough redhead...        porn    0.916550
    1  marketwatch gold stocks video chrome economy v...  recreation    0.370665
    2  forbes featured leadership watch money breakin...  recreation    0.422517
    3  bellesa audio vixen sensual passionate orgy ki...        porn    0.409875
    4    facebook watch messenger portal bulletin oculus        porn    0.284601
    5  last twitter music reset company back merchand...    shopping    0.420788
    
                                      image_domain_probs  used_domain_screenshot  \
    0  {'adv': 0.0004964823601767421, 'aggressive': 0...                    True
    1  {'adv': 0.007065971381962299, 'aggressive': 0....                    True
    2  {'adv': 0.0016623957781121135, 'aggressive': 7...                    True
    3  {'adv': 0.0008810096187517047, 'aggressive': 0...                    True
    4  {'adv': 0.030470917001366615, 'aggressive': 0....                    True
    5  {'adv': 0.01235155574977398, 'aggressive': 0.0...                    True
    
          label  label_prob                              combined_domain_probs
    0      porn    0.917735  {'adv': 0.0008730609436181221, 'aggressive': 0...
    1   finance    0.315346  {'adv': 0.004157805454510901, 'aggressive': 0....
    2      news    0.367533  {'adv': 0.006126448209980318, 'aggressive': 0....
    3      porn    0.686404  {'adv': 0.0005482309264956868, 'aggressive': 0...
    4      porn    0.223327  {'adv': 0.018425978099589416, 'aggressive': 0....
    5  shopping    0.232422  {'adv': 0.007266686965796081, 'aggressive': 0....

Authors

Rajashekar Chintalapati and Gaurav Sood

Contributor Code of Conduct

The project welcomes contributions from everyone! In fact, it depends on it. To maintain this welcoming atmosphere, and to collaborate in a fun and productive way, we expect contributors to the project to abide by the Contributor Code of Conduct.

License

The package is released under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

piedomains-0.0.19.tar.gz (3.4 MB view details)

Uploaded Source

Built Distribution

piedomains-0.0.19-py2.py3-none-any.whl (3.4 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file piedomains-0.0.19.tar.gz.

File metadata

  • Download URL: piedomains-0.0.19.tar.gz
  • Upload date:
  • Size: 3.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.16

File hashes

Hashes for piedomains-0.0.19.tar.gz
Algorithm Hash digest
SHA256 131d90d41cf49e164864d87df337334fcbd86740289e69c69619223a84e6281e
MD5 ac7f0b662beee10e850bcd9a54c81e82
BLAKE2b-256 3fcf73a732549db9cebb4e577129a902b239545109e870636654a92829384d23

See more details on using hashes here.

File details

Details for the file piedomains-0.0.19-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for piedomains-0.0.19-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 719e443f6b93a27a8047a558cbf8f582616f4555c2fb26568db856ae45df5e5c
MD5 d8ad6b3268b7ac339292b34d1f34129e
BLAKE2b-256 4da39da26433c002edabae0a10b1977f9936f363d11e2557606013be4201bb48

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page