Skip to main content

Toolbelt for PiePline training pipeline

Project description

PiePline toolbelt

Installation:

PyPI version PyPI Downloads/Month PyPI Downloads

pip install pietoolbelt

Install latest version before it's published on PyPi

pip install -U git+https://github.com/PiePline/pietoolbelt

Functional

  • augmentations
    • augmentations.detection - predefined augmentations for detection task
    • augmentations.segmentation - predefined augmentations for segmentation task
  • datasets
    • datasets.stratification - stratification by histogram
    • datasets.utils - set of datasets constructors that
  • losses
    • losses.common - losses utils
    • losses.regression - regression losses
    • losses.segmentation - losses for single and multi-class segmentation
    • losses.detection - losses for detection task
  • metrics -
    • metrics.common - common utils for metrics
    • cpu - metrics, that calculates by numpy
      • metrics.cpu.classification - classification metrics
      • metrics.cpu.detection - detection metrics
      • metrics.cpu.regression - regression metrics
      • metrics.cpu.segmentation - segmentation metrics
    • torch - metrics, that calculates by torch
      • metrics.torch.classification - classification metrics
      • metrics.torch.detection - detection metrics
      • metrics.torch.regression - regression metrics
      • metrics.torch.segmentation - segmentation metrics
  • models - models zoo and constructors
    • decoders.unet - UNet decoder, that automatically constructs by encoder
    • encoders.common - basic interfaces for encoders
    • encoders.inception - InceptionV3 encoder
    • encoders.mobile_net - MobileNetV2 encoder
    • encoders.resnet - ResNet encoders
    • albunet - albunet model
    • utils - models utils
    • weights_storage - pretrained weights storage
  • steps - some training process steps
    • regression.train - train step for regression task
    • regression.bagging - bagging step for regression task
    • segmentation.bagging - bagging step for segmentation task
    • segmentation.inference - inference for segmentation model
    • segmentation.predict - predict step for segmentation task
    • stratification - dataset stratification class
  • img_matcher - image comparison and matching tool based on descriptors
  • mask_composer - mask composer tools that can effectively combine masks for regular, instance or multiclass segmentation
  • train_config - some predefined train configs for PiePline
  • tta - test time augmentations
  • utils - some utils
  • viz - image visualisation tools

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pietoolbelt-0.3.26-py3-none-any.whl (78.6 kB view details)

Uploaded Python 3

File details

Details for the file pietoolbelt-0.3.26-py3-none-any.whl.

File metadata

  • Download URL: pietoolbelt-0.3.26-py3-none-any.whl
  • Upload date:
  • Size: 78.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for pietoolbelt-0.3.26-py3-none-any.whl
Algorithm Hash digest
SHA256 33a69486e9635057a00183aa27c2df09c629c62c65ad6c205b9d82a0d3f44c35
MD5 52d95e5f9c18f406f0eabdfcee034832
BLAKE2b-256 d6d30bec96f56527873d6e076a5be88cd5e784f05a28af2382aed032a92c7b74

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page