Skip to main content

Viewer for Python IMage Sequence (PIMS).

Project description

# pimsviewer
[![Anaconda-Server Badge](](

A graphical user interface (GUI) for PIMS (screenshot below)

This viewer was based on `skimage.viewer.CollectionViewer` ([docs](
and is able to work with N-dimensional image files that are opened by PIMS.

Also, it exposes a matplotlib plotting area on which images can be (dynamically)
annotated, making use of the `Plugin` infrastructure.

## Installation

Pimsviewer can be installed using conda:

conda install -c conda-forge pimsviewer

Alternatively, it can also be installed using pip:

pip install pimsviewer

## Starting the viewer

After installing the viewer, an executable `pimsviewer` is available. Simply run the command via your terminal/command line interface.
It is also possible to specify a reader. `pimsviewer --help` will list all installed readers, for example:

$ pimsviewer --help
Usage: pimsviewer [OPTIONS] [FILE]

--reader-class [ImageSequenceND|NorpixSeq|SpeStack|TiffStack_pil|MoviePyReader|ImageReaderND|ReaderSequence|ImageIOReader|ImageSequence|TiffStack_tifffile|TiffSeries|TiffStack_libtiff|BioformatsReader|PyAVReaderTimed|PyAVReaderIndexed|MM_TiffStack|ImageReader|FramesSequenceND|Cine]
Reader with which to open the file.
--help Show this message and exit.

## Using the viewer from Python
You can use the viewer in a Python script as follows:

from pimsviewer import Viewer
viewer = Viewer()
Optionally you may include a reader:

import pims
from pimsviewer import Viewer
viewer = Viewer('path/to/file'))

## Example: evaluating the effect of a processing function
This example adds a processing function that adds an adjustable amount of noise
to an image. The amount of noise is tunable with a slider, which is displayed
on the right of the image window.

import numpy as np
import pims
from pimsviewer import Viewer, ProcessPlugin, Slider

reader ='path/to/file')

def add_noise(img, noise_level):
return img + np.random.random(img.shape) * noise_level / 100 * img.max()

AddNoise = ProcessPlugin(add_noise, 'Add noise', dock='right')
AddNoise += Slider('noise_level', low=0, high=100, value=10,
viewer = Viewer(reader) + AddNoise

## Example: annotating features on a video
This example annotates features that were obtained via trackpy onto a video.

import trackpy as tp
from pimsviewer import Viewer, AnnotatePlugin
reader ='path/to/file')
f = tp.batch(reader, diameter=15)
(Viewer(reader) + AnnotatePlugin(f)).show()

## Example: selecting features on a video
This example annotates features on a video, allows to hide and move
features, and returns the adapted dataframe.

import trackpy as tp
from pimsviewer import Viewer, SelectionPlugin
reader ='path/to/file')
f = tp.batch(reader, diameter=15)
f = tp.link_df(f, search_range=10)
viewer = Viewer(reader) + SelectionPlugin(f)
f_result =

## Example: designing a custom plotting function
This dynamically shows the effect of `tp.locate`.

import trackpy as tp
from pimsviewer import Viewer, Slider, PlottingPlugin

def locate_and_plot(image, radius, minmass, separation, ax):
f = tp.locate(image, diameter=radius * 2 + 1, minmass=minmass,
if len(f) == 0:
return ax.plot(f['x'], f['y'], markersize=15, markeredgewidth=2,
markerfacecolor='none', markeredgecolor='r',
marker='o', linestyle='none')

reader ='path/to/file')
Locate = PlottingPlugin(locate_and_plot, 'Locate', dock='right')
Locate += Slider('radius', 2, 20, 7, value_type='int', orientation='vertical')
Locate += Slider('separation', 1, 100, 7, value_type='float', orientation='vertical')
Locate += Slider('minmass', 1, 10000, 100, value_type='int', orientation='vertical')
viewer = Viewer(reader) + Locate

## Screenshot


Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pimsviewer-1.1.tar.gz (23.7 kB view hashes)

Uploaded source

Built Distribution

pimsviewer-1.1-py3-none-any.whl (24.0 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page