Pinecone client and SDK
Project description
Pinecone Python Client ·
The official Pinecone Python client.
For more information, see the docs at https://www.pinecone.io/docs/
Documentation
- If you are upgrading from a
2.2.x
version of the client, check out the v3 Migration Guide. - Reference Documentation
Example code
Many of the brief examples shown in this README are using very small vectors to keep the documentation concise, but most real world usage will involve much larger embedding vectors. To see some more realistic examples of how this client can be used, explore some of our many Jupyter notebooks in the examples repository.
Prerequisites
The Pinecone Python client is compatible with Python 3.8 and greater.
Installation
There are two flavors of the Pinecone python client. The default client installed from PyPI as pinecone-client
has a minimal set of dependencies and interacts with Pinecone via HTTP requests.
If you are aiming to maximimize performance, you can install additional gRPC dependencies to access an alternate client implementation that relies on gRPC for data operations. See the guide on tuning performance.
Installing with pip
# Install the latest version
pip3 install pinecone-client
# Install the latest version, with extra grpc dependencies
pip3 install pinecone-client[grpc]
# Install a specific version
pip3 install pinecone-client==3.0.0
# Install a specific version, with grpc extras
pip3 install "pinecone-client[grpc]"==3.0.0
Installing with poetry
# Install the latest version
poetry add pinecone
# Install the latest version, with grpc extras
poetry add pinecone --extras grpc
# Install a specific version
poetry add pinecone-client==3.0.0
# Install a specific version, with grpc extras
poetry add pinecone-client==3.0.0 --extras grpc
Usage
Initializing the client
Before you can use the Pinecone SDK, you must sign up for an account and find your API key in the Pinecone console dashboard at https://app.pinecone.io.
Using environment variables
The Pinecone
class is your main entry point into the Pinecone python SDK. If you have set your API Key in the PINECONE_API_KEY
environment variable, you can instantiate the client with no other arguments.
from pinecone import Pinecone
pc = Pinecone() # This reads the PINECONE_API_KEY env var
Using a configuration object
If you prefer to pass configuration in code, for example if you have a complex application that needs to interact with multiple different Pinecone projects, the constructor accepts a keyword argument for api_key
.
If you pass configuration in this way, you can have full control over what name to use for the environment variable, sidestepping any issues that would result
from two different client instances both needing to read the same PINECONE_API_KEY
variable that the client implicitly checks for.
Configuration passed with keyword arguments takes precedent over environment variables.
import os
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ.get('CUSTOM_VAR'))
Working with GRPC (for improved performance)
If you've followed instructions above to install with optional grpc
extras, you can unlock some performance improvements by working with an alternative version of the client imported from the pinecone.grpc
subpackage.
import os
from pinecone.grpc import PineconeGRPC
pc = PineconeGRPC(api_key=os.environ.get('PINECONE_API_KEY'))
# From here on, everything is identical to the REST-based client.
index = pc.Index(host='my-index-8833ca1.svc.us-east1-gcp.pinecone.io')
index.upsert(vectors=[])
index.query(vector=[...], top_key=10)
Indexes
Create Index
Create a serverless index
[!WARNING]
Serverless indexes are in public preview and are available only on AWS in theus-west-2
region. Check the current limitations and test thoroughly before using it in production.
from pinecone import Pinecone, ServerlessSpec
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
pc.create_index(
name='my-index',
dimension=1536,
metric='euclidean',
spec=ServerlessSpec(
cloud='aws',
region='us-west-2'
)
)
Create a pod index
The following example creates an index without a metadata configuration. By default, Pinecone indexes all metadata.
from pinecone import Pinecone, PodSpec
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
pc.create_index(
name="example-index",
dimension=1536,
metric="cosine",
spec=PodSpec(
environment='us-west-2',
pod_type='p1.x1'
)
)
Pod indexes support many optional configuration fields. For example, the following example creates an index that only indexes the "color" metadata field. Queries against this index cannot filter based on any other metadata field.
from pinecone import Pinecone, PodSpec
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
metadata_config = {
"indexed": ["color"]
}
pc.create_index(
"example-index-2",
dimension=1536,
spec=PodSpec(
environment='us-west-2',
pod_type='p1.x1',
metadata_config=metadata_config
)
)
List indexes
The following example returns all indexes in your project.
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
for index in pc.list_indexes():
print(index['name'])
Describe index
The following example returns information about the index example-index
.
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
index_description = pc.describe_index("example-index")
Delete an index
The following example deletes the index named example-index
.
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
pc.delete_index("example-index")
Scale replicas
The following example changes the number of replicas for example-index
.
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
new_number_of_replicas = 4
pc.configure_index("example-index", replicas=new_number_of_replicas)
Describe index statistics
The following example returns statistics about the index example-index
.
import os
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
index = pc.Index(host=os.environ.get('INDEX_HOST'))
index_stats_response = index.describe_index_stats()
Upsert vectors
The following example upserts vectors to example-index
.
import os
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
index = pc.Index(host=os.environ.get('INDEX_HOST'))
upsert_response = index.upsert(
vectors=[
("vec1", [0.1, 0.2, 0.3, 0.4], {"genre": "drama"}),
("vec2", [0.2, 0.3, 0.4, 0.5], {"genre": "action"}),
],
namespace="example-namespace"
)
Query an index
The following example queries the index example-index
with metadata
filtering.
import os
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))
query_response = index.query(
namespace="example-namespace",
vector=[0.1, 0.2, 0.3, 0.4],
top_k=10,
include_values=True,
include_metadata=True,
filter={
"genre": {"$in": ["comedy", "documentary", "drama"]}
}
)
Delete vectors
The following example deletes vectors by ID.
import os
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))
delete_response = index.delete(ids=["vec1", "vec2"], namespace="example-namespace")
Fetch vectors
The following example fetches vectors by ID.
import os
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))
fetch_response = index.fetch(ids=["vec1", "vec2"], namespace="example-namespace")
Update vectors
The following example updates vectors by ID.
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))
update_response = index.update(
id="vec1",
values=[0.1, 0.2, 0.3, 0.4],
set_metadata={"genre": "drama"},
namespace="example-namespace"
)
Create collection
The following example creates the collection example-collection
from
example-index
.
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
pc.create_collection(
name="example-collection",
source="example-index"
)
List collections
The following example returns a list of the collections in the current project.
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
active_collections = pc.list_collections()
Describe a collection
The following example returns a description of the collection
example-collection
.
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
collection_description = pc.describe_collection("example-collection")
Delete a collection
The following example deletes the collection example-collection
.
from pinecone import Pinecone
pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
pc.delete_collection("example-collection")
Contributing
If you'd like to make a contribution, or get setup locally to develop the Pinecone python client, please see our contributing guide
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pinecone_client-3.0.1.tar.gz
.
File metadata
- Download URL: pinecone_client-3.0.1.tar.gz
- Upload date:
- Size: 103.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.12.1 Linux/6.2.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 626a0055852c88f1462fc2e132f21d2b078f9a0a74c70b17fe07df3081c6615f |
|
MD5 | 7e6a4f638a28cb10bf76639c0f8245af |
|
BLAKE2b-256 | e54d1c2b7b2571fbc91f84594fbddb74b97ace81296da7d0be090ae293b4dad1 |
File details
Details for the file pinecone_client-3.0.1-py3-none-any.whl
.
File metadata
- Download URL: pinecone_client-3.0.1-py3-none-any.whl
- Upload date:
- Size: 201.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.12.1 Linux/6.2.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9bb21c23a9088c6198c839be5538ed3f733d152d5fbeaafcc020c1b70b62c2d |
|
MD5 | da9280698d055b2f44bbe001ce468ff6 |
|
BLAKE2b-256 | fab2ae252a174f08f0748db9a982cabe4649c30caf9e492c561b2380afbcb6fb |