Skip to main content

Pinecone client and SDK

Project description

Pinecone Python Client · License CI

The official Pinecone Python client.

For more information, see the docs at https://www.pinecone.io/docs/

Documentation

Example code

Many of the brief examples shown in this README are using very small vectors to keep the documentation concise, but most real world usage will involve much larger embedding vectors. To see some more realistic examples of how this client can be used, explore some of our many Jupyter notebooks in the examples repository.

Prerequisites

The Pinecone Python client is compatible with Python 3.8 and greater.

Installation

There are two flavors of the Pinecone python client. The default client installed from PyPI as pinecone-client has a minimal set of dependencies and interacts with Pinecone via HTTP requests.

If you are aiming to maximimize performance, you can install additional gRPC dependencies to access an alternate client implementation that relies on gRPC for data operations. See the guide on tuning performance.

Installing with pip

# Install the latest version
pip3 install pinecone-client

# Install the latest version, with extra grpc dependencies
pip3 install "pinecone-client[grpc]"

# Install a specific version
pip3 install pinecone-client==3.0.0

# Install a specific version, with grpc extras
pip3 install "pinecone-client[grpc]"==3.0.0

Installing with poetry

# Install the latest version
poetry add pinecone

# Install the latest version, with grpc extras
poetry add pinecone --extras grpc

# Install a specific version
poetry add pinecone-client==3.0.0

# Install a specific version, with grpc extras
poetry add pinecone-client==3.0.0 --extras grpc

Usage

Initializing the client

Before you can use the Pinecone SDK, you must sign up for an account and find your API key in the Pinecone console dashboard at https://app.pinecone.io.

Using environment variables

The Pinecone class is your main entry point into the Pinecone python SDK. If you have set your API Key in the PINECONE_API_KEY environment variable, you can instantiate the client with no other arguments.

from pinecone import Pinecone

pc = Pinecone() # This reads the PINECONE_API_KEY env var

Using a configuration object

If you prefer to pass configuration in code, for example if you have a complex application that needs to interact with multiple different Pinecone projects, the constructor accepts a keyword argument for api_key.

If you pass configuration in this way, you can have full control over what name to use for the environment variable, sidestepping any issues that would result from two different client instances both needing to read the same PINECONE_API_KEY variable that the client implicitly checks for.

Configuration passed with keyword arguments takes precedent over environment variables.

import os
from pinecone import Pinecone

pc = Pinecone(api_key=os.environ.get('CUSTOM_VAR'))

Working with GRPC (for improved performance)

If you've followed instructions above to install with optional grpc extras, you can unlock some performance improvements by working with an alternative version of the client imported from the pinecone.grpc subpackage.

import os
from pinecone.grpc import PineconeGRPC

pc = PineconeGRPC(api_key=os.environ.get('PINECONE_API_KEY'))

# From here on, everything is identical to the REST-based client.
index = pc.Index(host='my-index-8833ca1.svc.us-east1-gcp.pinecone.io')

index.upsert(vectors=[])
index.query(vector=[...], top_key=10)

Indexes

Create Index

Create a serverless index

[!WARNING]
Serverless indexes are in public preview and are available only on AWS in the us-west-2 region. Check the current limitations and test thoroughly before using it in production.

from pinecone import Pinecone, ServerlessSpec

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
pc.create_index(
    name='my-index',
    dimension=1536,
    metric='euclidean',
    spec=ServerlessSpec(
        cloud='aws',
        region='us-west-2'
    )
)

Create a pod index

The following example creates an index without a metadata configuration. By default, Pinecone indexes all metadata.

from pinecone import Pinecone, PodSpec

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
pc.create_index(
    name="example-index", 
    dimension=1536, 
    metric="cosine", 
    spec=PodSpec(
        environment='us-west-2', 
        pod_type='p1.x1'
    )
)

Pod indexes support many optional configuration fields. For example, the following example creates an index that only indexes the "color" metadata field. Queries against this index cannot filter based on any other metadata field.

from pinecone import Pinecone, PodSpec

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

metadata_config = {
    "indexed": ["color"]
}

pc.create_index(
    "example-index-2",
    dimension=1536,
    spec=PodSpec(
        environment='us-west-2', 
        pod_type='p1.x1', 
        metadata_config=metadata_config
    )
)

List indexes

The following example returns all indexes in your project.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
for index in pc.list_indexes():
    print(index['name'])

Describe index

The following example returns information about the index example-index.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

index_description = pc.describe_index("example-index")

Delete an index

The following example deletes the index named example-index.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

pc.delete_index("example-index")

Scale replicas

The following example changes the number of replicas for example-index.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

new_number_of_replicas = 4
pc.configure_index("example-index", replicas=new_number_of_replicas)

Describe index statistics

The following example returns statistics about the index example-index.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
index = pc.Index(host=os.environ.get('INDEX_HOST'))

index_stats_response = index.describe_index_stats()

Upsert vectors

The following example upserts vectors to example-index.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')
index = pc.Index(host=os.environ.get('INDEX_HOST'))

upsert_response = index.upsert(
    vectors=[
        ("vec1", [0.1, 0.2, 0.3, 0.4], {"genre": "drama"}),
        ("vec2", [0.2, 0.3, 0.4, 0.5], {"genre": "action"}),
    ],
    namespace="example-namespace"
)

Query an index

The following example queries the index example-index with metadata filtering.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))

query_response = index.query(
    namespace="example-namespace",
    vector=[0.1, 0.2, 0.3, 0.4],
    top_k=10,
    include_values=True,
    include_metadata=True,
    filter={
        "genre": {"$in": ["comedy", "documentary", "drama"]}
    }
)

Delete vectors

The following example deletes vectors by ID.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))

delete_response = index.delete(ids=["vec1", "vec2"], namespace="example-namespace")

Fetch vectors

The following example fetches vectors by ID.

import os
from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))

fetch_response = index.fetch(ids=["vec1", "vec2"], namespace="example-namespace")

Update vectors

The following example updates vectors by ID.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

# Find your index host by calling describe_index
# through the Pinecone web console
index = pc.Index(host=os.environ.get('INDEX_HOST'))

update_response = index.update(
    id="vec1",
    values=[0.1, 0.2, 0.3, 0.4],
    set_metadata={"genre": "drama"},
    namespace="example-namespace"
)

Create collection

The following example creates the collection example-collection from example-index.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

pc.create_collection(
    name="example-collection", 
    source="example-index"
)

List collections

The following example returns a list of the collections in the current project.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

active_collections = pc.list_collections()

Describe a collection

The following example returns a description of the collection example-collection.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

collection_description = pc.describe_collection("example-collection")

Delete a collection

The following example deletes the collection example-collection.

from pinecone import Pinecone

pc = Pinecone(api_key='<<PINECONE_API_KEY>>')

pc.delete_collection("example-collection")

Contributing

If you'd like to make a contribution, or get setup locally to develop the Pinecone python client, please see our contributing guide

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pinecone_client-3.1.0.dev1.tar.gz (106.6 kB view details)

Uploaded Source

Built Distribution

pinecone_client-3.1.0.dev1-py3-none-any.whl (208.4 kB view details)

Uploaded Python 3

File details

Details for the file pinecone_client-3.1.0.dev1.tar.gz.

File metadata

  • Download URL: pinecone_client-3.1.0.dev1.tar.gz
  • Upload date:
  • Size: 106.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Linux/6.2.0-1019-azure

File hashes

Hashes for pinecone_client-3.1.0.dev1.tar.gz
Algorithm Hash digest
SHA256 19ff12bd36800f2fa9014863269b5f472997ad0bf510857e8feb065ee9575f7d
MD5 a30864f8e344d02e2c460144b8814ea0
BLAKE2b-256 d9c88d54b00fc83186d129bfc9ad522bc5cb73aa1f6c113176f153eddfbd8ecf

See more details on using hashes here.

File details

Details for the file pinecone_client-3.1.0.dev1-py3-none-any.whl.

File metadata

File hashes

Hashes for pinecone_client-3.1.0.dev1-py3-none-any.whl
Algorithm Hash digest
SHA256 795e64e6e6a31a2784ea769ce8321db3f6e85f53f5028c12b13d80ae72696b69
MD5 3cd90a86c4b974c0ce528f9c74bf6985
BLAKE2b-256 90dc2e8944750b8de9951f368b0a9135be39fdaf0a2ba5d71ef78e0165a7653a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page