Skip to main content

Pingouin: statistical package for Python

Project description


https://badge.fury.io/py/pingouin.svg https://img.shields.io/conda/vn/conda-forge/pingouin.svg https://img.shields.io/github/license/raphaelvallat/pingouin.svg https://github.com/raphaelvallat/pingouin/actions/workflows/python_tests.yml/badge.svg https://codecov.io/gh/raphaelvallat/pingouin/branch/master/graph/badge.svg https://pepy.tech/badge/pingouin/month http://joss.theoj.org/papers/d2254e6d8e8478da192148e4cfbe4244/status.svg
https://pingouin-stats.org/build/html/_images/logo_pingouin.png

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the API documentation.

  1. ANOVAs: N-ways, repeated measures, mixed, ancova

  2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations

  3. Robust, partial, distance and repeated measures correlations

  4. Linear/logistic regression and mediation analysis

  5. Bayes Factors

  6. Multivariate tests

  7. Reliability and consistency

  8. Effect sizes and power analysis

  9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient

  10. Circular statistics

  11. Chi-squared tests

  12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation…

Pingouin is designed for users who want simple yet exhaustive statistical functions.

For example, the ttest_ind function of SciPy returns only the T-value and the p-value. By contrast, the ttest function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen’s d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.

Documentation

Chat

If you have questions, please ask them in GitHub Discussions.

Installation

Dependencies

The main dependencies of Pingouin are :

In addition, some functions require :

Pingouin is a Python 3 package and is currently tested for Python 3.8-3.11.

User installation

Pingouin can be easily installed using pip

pip install pingouin

or conda

conda install -c conda-forge pingouin

New releases are frequent so always make sure that you have the latest version:

pip install --upgrade pingouin

Development

To build and install from source, clone this repository or download the source archive and decompress the files

cd pingouin
python -m build            # optional, build a wheel and sdist
pip install .              # install the package
pip install --editable .   # or editable install
pytest                     # test the package

Quick start

Click on the link below and navigate to the notebooks/ folder to run a collection of interactive Jupyter notebooks showing the main functionalities of Pingouin. No need to install Pingouin beforehand, the notebooks run in a Binder environment.

https://mybinder.org/badge.svg

10 minutes to Pingouin

1. T-test

import numpy as np
import pingouin as pg

np.random.seed(123)
mean, cov, n = [4, 5], [(1, .6), (.6, 1)], 30
x, y = np.random.multivariate_normal(mean, cov, n).T

# T-test
pg.ttest(x, y)
Output

T

dof

alternative

p-val

CI95%

cohen-d

BF10

power

-3.401

58

two-sided

0.001

[-1.68 -0.43]

0.878

26.155

0.917


2. Pearson’s correlation

pg.corr(x, y)
Output

n

r

CI95%

p-val

BF10

power

30

0.595

[0.3 0.79]

0.001

69.723

0.950


3. Robust correlation

# Introduce an outlier
x[5] = 18
# Use the robust biweight midcorrelation
pg.corr(x, y, method="bicor")
Output

n

r

CI95%

p-val

power

30

0.576

[0.27 0.78]

0.001

0.933


4. Test the normality of the data

The pingouin.normality function works with lists, arrays, or pandas DataFrame in wide or long-format.

print(pg.normality(x))                                    # Univariate normality
print(pg.multivariate_normality(np.column_stack((x, y)))) # Multivariate normality
Output

W

pval

normal

0.615

0.000

False

(False, 0.00018)

5. One-way ANOVA using a pandas DataFrame

# Read an example dataset
df = pg.read_dataset('mixed_anova')

# Run the ANOVA
aov = pg.anova(data=df, dv='Scores', between='Group', detailed=True)
print(aov)
Output

Source

SS

DF

MS

F

p-unc

np2

Group

5.460

1

5.460

5.244

0.023

0.029

Within

185.343

178

1.041

nan

nan

nan


6. Repeated measures ANOVA

pg.rm_anova(data=df, dv='Scores', within='Time', subject='Subject', detailed=True)
Output

Source

SS

DF

MS

F

p-unc

ng2

eps

Time

7.628

2

3.814

3.913

0.023

0.04

0.999

Error

115.027

118

0.975

nan

nan

nan

nan


7. Post-hoc tests corrected for multiple-comparisons

# FDR-corrected post hocs with Hedges'g effect size
posthoc = pg.pairwise_tests(data=df, dv='Scores', within='Time', subject='Subject',
                             parametric=True, padjust='fdr_bh', effsize='hedges')

# Pretty printing of table
pg.print_table(posthoc, floatfmt='.3f')
Output

Contrast

A

B

Paired

Parametric

T

dof

alternative

p-unc

p-corr

p-adjust

BF10

hedges

Time

August

January

True

True

-1.740

59.000

two-sided

0.087

0.131

fdr_bh

0.582

-0.328

Time

August

June

True

True

-2.743

59.000

two-sided

0.008

0.024

fdr_bh

4.232

-0.483

Time

January

June

True

True

-1.024

59.000

two-sided

0.310

0.310

fdr_bh

0.232

-0.170


8. Two-way mixed ANOVA

# Compute the two-way mixed ANOVA
aov = pg.mixed_anova(data=df, dv='Scores', between='Group', within='Time',
                     subject='Subject', correction=False, effsize="np2")
pg.print_table(aov)
Output

Source

SS

DF1

DF2

MS

F

p-unc

np2

eps

Group

5.460

1

58

5.460

5.052

0.028

0.080

nan

Time

7.628

2

116

3.814

4.027

0.020

0.065

0.999

Interaction

5.167

2

116

2.584

2.728

0.070

0.045

nan


9. Pairwise correlations between columns of a dataframe

import pandas as pd
np.random.seed(123)
z = np.random.normal(5, 1, 30)
data = pd.DataFrame({'X': x, 'Y': y, 'Z': z})
pg.pairwise_corr(data, columns=['X', 'Y', 'Z'], method='pearson')
Output

X

Y

method

alternative

n

r

CI95%

p-unc

BF10

power

X

Y

pearson

two-sided

30

0.366

[0.01 0.64]

0.047

1.500

0.525

X

Z

pearson

two-sided

30

0.251

[-0.12 0.56]

0.181

0.534

0.272

Y

Z

pearson

two-sided

30

0.020

[-0.34 0.38]

0.916

0.228

0.051


10. Pairwise T-test between columns of a dataframe

data.ptests(paired=True, stars=False)
Pairwise T-tests, with T-values on the lower triangle and p-values on the upper triangle

X

Y

Z

X

0.226

0.165

Y

-1.238

0.658

Z

-1.424

-0.447


11. Multiple linear regression

pg.linear_regression(data[['X', 'Z']], data['Y'])
Linear regression summary

names

coef

se

T

pval

r2

adj_r2

CI[2.5%]

CI[97.5%]

Intercept

4.650

0.841

5.530

0.000

0.139

0.076

2.925

6.376

X

0.143

0.068

2.089

0.046

0.139

0.076

0.003

0.283

Z

-0.069

0.167

-0.416

0.681

0.139

0.076

-0.412

0.273


12. Mediation analysis

pg.mediation_analysis(data=data, x='X', m='Z', y='Y', seed=42, n_boot=1000)
Mediation summary

path

coef

se

pval

CI[2.5%]

CI[97.5%]

sig

Z ~ X

0.103

0.075

0.181

-0.051

0.256

No

Y ~ Z

0.018

0.171

0.916

-0.332

0.369

No

Total

0.136

0.065

0.047

0.002

0.269

Yes

Direct

0.143

0.068

0.046

0.003

0.283

Yes

Indirect

-0.007

0.025

0.898

-0.069

0.029

No


13. Contingency analysis

data = pg.read_dataset('chi2_independence')
expected, observed, stats = pg.chi2_independence(data, x='sex', y='target')
stats
Chi-squared tests summary

test

lambda

chi2

dof

p

cramer

power

pearson

1.000

22.717

1.000

0.000

0.274

0.997

cressie-read

0.667

22.931

1.000

0.000

0.275

0.998

log-likelihood

0.000

23.557

1.000

0.000

0.279

0.998

freeman-tukey

-0.500

24.220

1.000

0.000

0.283

0.998

mod-log-likelihood

-1.000

25.071

1.000

0.000

0.288

0.999

neyman

-2.000

27.458

1.000

0.000

0.301

0.999

Integration with Pandas

Several functions of Pingouin can be used directly as pandas DataFrame methods. Try for yourself with the code below:

import pingouin as pg

# Example 1 | ANOVA
df = pg.read_dataset('mixed_anova')
df.anova(dv='Scores', between='Group', detailed=True)

# Example 2 | Pairwise correlations
data = pg.read_dataset('mediation')
data.pairwise_corr(columns=['X', 'M', 'Y'], covar=['Mbin'])

# Example 3 | Partial correlation matrix
data.pcorr()

The functions that are currently supported as pandas method are:

Development

Pingouin was created and is maintained by Raphael Vallat, a postdoctoral researcher at UC Berkeley, mostly during his spare time. Contributions are more than welcome so feel free to contact me, open an issue or submit a pull request!

To see the code or report a bug, please visit the GitHub repository.

This program is provided with NO WARRANTY OF ANY KIND. Pingouin is still under heavy development and there are likely hidden bugs. Always double check the results with another statistical software.

Contributors

How to cite Pingouin?

If you want to cite Pingouin, please use the publication in JOSS:

Acknowledgement

Several functions of Pingouin were inspired from R or Matlab toolboxes, including:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pingouin-0.5.5.tar.gz (232.2 kB view details)

Uploaded Source

Built Distribution

pingouin-0.5.5-py3-none-any.whl (204.4 kB view details)

Uploaded Python 3

File details

Details for the file pingouin-0.5.5.tar.gz.

File metadata

  • Download URL: pingouin-0.5.5.tar.gz
  • Upload date:
  • Size: 232.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.6

File hashes

Hashes for pingouin-0.5.5.tar.gz
Algorithm Hash digest
SHA256 2aac834128e99a4df8cffd8151c21adc7c42fe493e389c6fc2581b84e436ddd9
MD5 34b89d8789e2f40735d2e36a15ae41c1
BLAKE2b-256 0e3d14a779790bac2d03a0d8f82c1857fc83c0ef8b1b77542b884808e55ee839

See more details on using hashes here.

File details

Details for the file pingouin-0.5.5-py3-none-any.whl.

File metadata

  • Download URL: pingouin-0.5.5-py3-none-any.whl
  • Upload date:
  • Size: 204.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.6

File hashes

Hashes for pingouin-0.5.5-py3-none-any.whl
Algorithm Hash digest
SHA256 3156afe44ee5541131200848ee905937930757b615aca8eed8438ad4d4e20ef1
MD5 25413075c6a128674514b722c2b5f5ce
BLAKE2b-256 eb566d3607f3a78aee1de8e5466f5171722c8e344266a12dc44ccb73d024b3b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page