Skip to main content

Python DB-API and SQLAlchemy dialect for Pinot.

Project description

Python DB-API and SQLAlchemy dialect for Pinot

This module allows accessing Pinot via its SQL API.

Current supported Pinot version: 0.9.3.

Usage

Using the DB API to query Pinot Broker directly:

from pinotdb import connect

conn = connect(host='localhost', port=8099, path='/query/sql', scheme='http')
curs = conn.cursor()
curs.execute("""
    SELECT place,
           CAST(REGEXP_EXTRACT(place, '(.*),', 1) AS FLOAT) AS lat,
           CAST(REGEXP_EXTRACT(place, ',(.*)', 1) AS FLOAT) AS lon
      FROM places
     LIMIT 10
""")
for row in curs:
    print(row)

For HTTPS:

from pinotdb import connect

conn = connect(host='localhost', port=443, path='/query/sql', scheme='https')
curs = conn.cursor()
curs.execute("""
    SELECT place,
           CAST(REGEXP_EXTRACT(place, '(.*),', 1) AS FLOAT) AS lat,
           CAST(REGEXP_EXTRACT(place, ',(.*)', 1) AS FLOAT) AS lon
      FROM places
     LIMIT 10
""")
for row in curs:
    print(row)

Pinot also supports basic auth, e.g.

conn = connect(host="localhost", port=443, path="/query/sql", scheme="https", username="my-user", password="my-password", verify_ssl=True)

Using SQLAlchemy:

Since db engine requires more information beyond Pinot Broker, you need to provide pinot controller for table and schema information.

The db engine connection string is format as:

pinot+<pinot-broker-protocol>://<pinot-broker-host>:<pinot-broker-port><pinot-broker-path>?controller=<pinot-controller-protocol>://<pinot-controller-host>:<pinot-controller-port>/

Default scheme is HTTP so you can ignore it. e.g. pinot+http://localhost:8099/query/sql?controller=http://localhost:9000/ and pinot://localhost:8099/query/sql?controller=localhost:9000/ work in same way.

For HTTPS, you have to specify the https scheme explicitly along with the port.

pinot+https://<pinot-broker-host>:<pinot-broker-port><pinot-broker-path>?controller=https://<pinot-controller-host>:<pinot-controller-port>/

E.g. pinot+https://pinot-broker.pinot.live:443/query/sql?controller=https://pinot-controller.pinot.live/.

Please note that the broker port 443 has to be explicitly put there.

This can be used as Superset to Pinot connection:

If you have basic auth:

pinot+https://<my-user>:<my-password>@<pinot-broker-host>:<pinot-broker-port><pinot-broker-path>?controller=https://<pinot-controller-host>:<pinot-controller-port>/[&&verify_ssl=<true/false>]

E.g. pinot+https://my-user:my-password@my-secure-pinot-broker:443/query/sql?controller=https://my-secure-pinot-controller/&&verify_ssl=true.

Below are some sample scripts to query pinot using sqlalchemy:

from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *

engine = create_engine('pinot://localhost:8099/query/sql?controller=http://localhost:9000/')  # uses HTTP by default :(
# engine = create_engine('pinot+http://localhost:8099/query/sql?controller=http://localhost:9000/')
# engine = create_engine('pinot+https://localhost:8099/query/sql?controller=https://localhost:9000/')

places = Table('places', MetaData(bind=engine), autoload=True)
print(select([func.count('*')], from_obj=places).scalar())

Examples with Pinot Quickstart

Start Pinot Batch Quickstart

docker run --name pinot-quickstart -p 2123:2123 -p 9000:9000 -p 8000:8000 -d apachepinot/pinot:latest QuickStart -type batch

Once pinot batch quickstart is up, you can run below sample code snippet to query Pinot:

python3 examples/pinot-quickstart-batch.py

Sample Output:

Sending SQL to Pinot: SELECT * FROM baseballStats LIMIT 5
[0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 'NL', 11, 11, 'aardsda01', 'David Allan', 1, 0, 0, 0, 0, 0, 0, 'SFN', 0, 2004]
[2, 45, 0, 0, 0, 0, 0, 0, 0, 0, 'NL', 45, 43, 'aardsda01', 'David Allan', 1, 0, 0, 0, 1, 0, 0, 'CHN', 0, 2006]
[0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 'AL', 25, 2, 'aardsda01', 'David Allan', 1, 0, 0, 0, 0, 0, 0, 'CHA', 0, 2007]
[1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 'AL', 47, 5, 'aardsda01', 'David Allan', 1, 0, 0, 0, 0, 0, 1, 'BOS', 0, 2008]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 'AL', 73, 3, 'aardsda01', 'David Allan', 1, 0, 0, 0, 0, 0, 0, 'SEA', 0, 2009]

Sending SQL to Pinot: SELECT playerName, sum(runs) FROM baseballStats WHERE yearID>=2000 GROUP BY playerName LIMIT 5
['Scott Michael', 26.0]
['Justin Morgan', 0.0]
['Jason Andre', 0.0]
['Jeffrey Ellis', 0.0]
['Maximiliano R.', 16.0]

Sending SQL to Pinot: SELECT playerName,sum(runs) AS sum_runs FROM baseballStats WHERE yearID>=2000 GROUP BY playerName ORDER BY sum_runs DESC LIMIT 5
['Adrian', 1820.0]
['Jose Antonio', 1692.0]
['Rafael', 1565.0]
['Brian Michael', 1500.0]
['Alexander Emmanuel', 1426.0]

Start Pinot Hybrid Quickstart

docker run --name pinot-quickstart -p 2123:2123 -p 9000:9000 -p 8000:8000 -d apachepinot/pinot:latest QuickStart -type hybrid

Below is an example against Pinot Quickstart Hybrid:

python3 examples/pinot-quickstart-hybrid.py
Sending SQL to Pinot: SELECT * FROM airlineStats LIMIT 5
[171, 153, 19393, 0, 8, 8, 1433, '1400-1459', 0, 1425, 1240, 165, 'null', 0, 'WN', -2147483648, 1, 27, 17540, 0, 2, 2, 1242, '1200-1259', 0, 'MDW', 13232, 1323202, 30977, 'Chicago, IL', 'IL', 17, 'Illinois', 41, 861, 4, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-27', 402, 1, -2147483648, -2147483648, 1, -2147483648, 'BOS', 10721, 1072102, 30721, 'Boston, MA', 'MA', 25, 'Massachusetts', 13, 1, ['null'], -2147483648, 'N556WN', 6, 12, -2147483648, 'WN', -2147483648, 1254, 1427, 2014]
[183, 141, 20398, 1, 17, 17, 1302, '1200-1259', 1, 1245, 1005, 160, 'null', 0, 'MQ', 0, 1, 27, 17540, 0, -6, 0, 959, '1000-1059', -1, 'CMH', 11066, 1106603, 31066, 'Columbus, OH', 'OH', 39, 'Ohio', 44, 990, 4, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-27', 3574, 1, 0, -2147483648, 1, 17, 'MIA', 13303, 1330303, 32467, 'Miami, FL', 'FL', 12, 'Florida', 33, 1, ['null'], 0, 'N605MQ', 13, 29, -2147483648, 'MQ', 0, 1028, 1249, 2014]
[-2147483648, -2147483648, 20304, -2147483648, -2147483648, -2147483648, -2147483648, '2100-2159', -2147483648, 2131, 2005, 146, 'null', 0, 'OO', -2147483648, 1, 27, 17541, 1, 52, 52, 2057, '2000-2059', 3, 'COS', 11109, 1110902, 30189, 'Colorado Springs, CO', 'CO', 8, 'Colorado', 82, 809, 4, -2147483648, [11292], 1, [1129202], ['DEN'], -2147483648, 73, [9], 0, ['null'], [9], [-2147483648], [2304], 1, -2147483648, '2014-01-27', 5554, 1, -2147483648, -2147483648, 1, -2147483648, 'IAH', 12266, 1226603, 31453, 'Houston, TX', 'TX', 48, 'Texas', 74, 1, ['SEA', 'PSC', 'PHX', 'MSY', 'ATL', 'TYS', 'DEN', 'CHS', 'PDX', 'LAX', 'EWR', 'SFO', 'PIT', 'RDU', 'RAP', 'LSE', 'SAN', 'SBN', 'IAH', 'OAK', 'BRO', 'JFK', 'SAT', 'ORD', 'ACY', 'DFW', 'BWI'], -2147483648, 'N795SK', -2147483648, 19, -2147483648, 'OO', -2147483648, 2116, -2147483648, 2014]
[153, 125, 20436, 1, 41, 41, 1442, '1400-1459', 2, 1401, 1035, 146, 'null', 0, 'F9', 2, 1, 27, 17541, 1, 34, 34, 1109, '1000-1059', 2, 'DEN', 11292, 1129202, 30325, 'Denver, CO', 'CO', 8, 'Colorado', 82, 967, 4, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-27', 658, 1, 8, -2147483648, 1, 31, 'SFO', 14771, 1477101, 32457, 'San Francisco, CA', 'CA', 6, 'California', 91, 1, ['null'], 0, 'N923FR', 11, 17, -2147483648, 'F9', 0, 1126, 1431, 2014]
[-2147483648, -2147483648, 20304, -2147483648, -2147483648, -2147483648, -2147483648, '1400-1459', -2147483648, 1432, 1314, 78, 'B', 1, 'OO', -2147483648, 1, 27, 17541, -2147483648, -2147483648, -2147483648, -2147483648, '1300-1359', -2147483648, 'EAU', 11471, 1147103, 31471, 'Eau Claire, WI', 'WI', 55, 'Wisconsin', 45, 268, 2, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-27', 5455, 1, -2147483648, -2147483648, 1, -2147483648, 'ORD', 13930, 1393003, 30977, 'Chicago, IL', 'IL', 17, 'Illinois', 41, 1, ['null'], -2147483648, 'N903SW', -2147483648, -2147483648, -2147483648, 'OO', -2147483648, -2147483648, -2147483648, 2014]

Sending SQL to Pinot: SELECT count(*) FROM airlineStats LIMIT 5
[17772]

Sending SQL to Pinot: SELECT AirlineID, sum(Cancelled) FROM airlineStats WHERE Year > 2010 GROUP BY AirlineID LIMIT 5
[20409, 40.0]
[19930, 16.0]
[19805, 60.0]
[19790, 115.0]
[20366, 172.0]

Sending SQL to Pinot: select OriginCityName, max(Flights) from airlineStats group by OriginCityName ORDER BY max(Flights) DESC LIMIT 5
['Casper, WY', 1.0]
['Deadhorse, AK', 1.0]
['Austin, TX', 1.0]
['Chicago, IL', 1.0]
['Monterey, CA', 1.0]

Sending SQL to Pinot: SELECT OriginCityName, sum(Cancelled) AS sum_cancelled FROM airlineStats WHERE Year>2010 GROUP BY OriginCityName ORDER BY sum_cancelled DESC LIMIT 5
['Chicago, IL', 178.0]
['Atlanta, GA', 111.0]
['New York, NY', 65.0]
['Houston, TX', 62.0]
['Denver, CO', 49.0]

Sending Count(*) SQL to Pinot
17773

Sending SQL: "SELECT OriginCityName, sum(Cancelled) AS sum_cancelled FROM "airlineStats" WHERE Year>2010 GROUP BY OriginCityName ORDER BY sum_cancelled DESC LIMIT 5" to Pinot
[('Chicago, IL', 178.0), ('Atlanta, GA', 111.0), ('New York, NY', 65.0), ('Houston, TX', 62.0), ('Denver, CO', 49.0)]

Examples with existing pinot.live demo cluster

Just run below script to query pinot.live demo cluster in two ways using pinotdb connect and sqlalchemy.

python3 examples/pinot-live.py

And response:

Sending SQL to Pinot: SELECT * FROM airlineStats LIMIT 5
[384, 359, 19805, 0, 13, 13, 1238, '1200-1259', 0, 1225, 900, 385, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, 14, 14, 914, '0900-0959', 0, 'LAX', 12892, 1289203, 32575, 'Los Angeles, CA', 'CA', 6, 'California', 91, 2475, 10, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 1, 1, -2147483648, -2147483648, 1, -2147483648, 'JFK', 12478, 1247802, 31703, 'New York, NY', 'NY', 36, 'New York', 22, 1, ['SEA', 'PSC', 'PHX', 'MSY', 'ATL', 'TYS', 'DEN', 'CHS', 'PDX', 'LAX', 'EWR', 'SFO', 'PIT', 'RDU', 'RAP', 'LSE', 'SAN', 'SBN', 'IAH', 'OAK', 'BRO', 'JFK', 'SAT', 'ORD', 'ACY', 'DFW', 'BWI', 'TPA', 'BFL', 'BOS', 'SNA', 'ISN'], -2147483648, 'N338AA', 5, 20, -2147483648, 'AA', -2147483648, 934, 1233, 2014]
[269, 251, 19805, 0, -36, 0, 1549, '1600-1659', -2, 1625, 825, 300, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, -5, 0, 820, '0800-0859', -1, 'JFK', 12478, 1247802, 31703, 'New York, NY', 'NY', 36, 'New York', 22, 2248, 9, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 44, 1, -2147483648, -2147483648, 1, -2147483648, 'LAS', 12889, 1288903, 32211, 'Las Vegas, NV', 'NV', 32, 'Nevada', 85, 1, ['SEA', 'PSC', 'PHX', 'MSY', 'ATL', 'TYS', 'DEN', 'CHS', 'PDX', 'LAX', 'EWR', 'SFO', 'PIT', 'RDU', 'RAP', 'LSE', 'SAN', 'SBN', 'IAH', 'OAK'], -2147483648, 'N3DVAA', 6, 12, -2147483648, 'AA', -2147483648, 832, 1543, 2014]
[307, 288, 19805, 0, -26, 0, 2039, '2100-2159', -2, 2105, 1340, 325, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, -8, 0, 1332, '1300-1359', -1, 'LAX', 12892, 1289203, 32575, 'Los Angeles, CA', 'CA', 6, 'California', 91, 2556, 11, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 162, 1, -2147483648, -2147483648, 1, -2147483648, 'HNL', 12173, 1217301, 32134, 'Honolulu, HI', 'HI', 15, 'Hawaii', 2, 1, ['SEA', 'PSC', 'PHX', 'MSY', 'ATL', 'TYS', 'DEN'], -2147483648, 'N5FCAA', 8, 11, -2147483648, 'AA', -2147483648, 1343, 2031, 2014]
[141, 126, 19805, 0, -19, 0, 1456, '1500-1559', -2, 1515, 1135, 160, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, 0, 0, 1135, '1100-1159', 0, 'DCA', 11278, 1127802, 30852, 'Washington, DC', 'VA', 51, 'Virginia', 38, 1192, 5, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 130, 1, -2147483648, -2147483648, 1, -2147483648, 'DFW', 11298, 1129803, 30194, 'Dallas/Fort Worth, TX', 'TX', 48, 'Texas', 74, 1, ['null'], -2147483648, 'N3EGAA', 4, 11, -2147483648, 'AA', -2147483648, 1146, 1452, 2014]
[300, 277, 19805, 0, -8, 0, 32, '0001-0559', -1, 40, 1625, 315, 'null', 0, 'AA', -2147483648, 3, 1, 16071, 0, 7, 7, 1632, '1600-1659', 0, 'JFK', 12478, 1247802, 31703, 'New York, NY', 'NY', 36, 'New York', 22, 2475, 10, -2147483648, [-2147483648], 0, [-2147483648], ['null'], -2147483648, -2147483648, [-2147483648], -2147483648, ['null'], [-2147483648], [-2147483648], [-2147483648], 0, -2147483648, '2014-01-01', 180, 1, -2147483648, -2147483648, 1, -2147483648, 'LAX', 12892, 1289203, 32575, 'Los Angeles, CA', 'CA', 6, 'California', 91, 1, ['null'], -2147483648, 'N335AA', 10, 13, -2147483648, 'AA', -2147483648, 1645, 22, 2014]

Sending Count(*) SQL to Pinot
9746

Sending SQL: "SELECT playerName, sum(runs) AS sum_runs FROM "baseballStats" WHERE yearID>=2000 GROUP BY playerName ORDER BY sum_runs DESC LIMIT 5" to Pinot
[(19790, 581.0), (19977, 522.0), (19690, 520.0), (19805, 481.0), (20409, 410.0), (21171, 385.0), (19930, 378.0), (20355, 377.0), (19393, 326.0), (20437, 268.0)]

Release

Update pinotdb/version.py file to set the desired library version, e.g. 0.3.4.

Run to build the distribution and test it locally.

python3 setup.py sdist

run below command to build the distribution and upload it to pypi pinotdb

python3 setup.py sdist upload

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pinotdb-0.3.13.tar.gz (21.6 kB view details)

Uploaded Source

Built Distribution

pinotdb-0.3.13-py2.py3-none-any.whl (17.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pinotdb-0.3.13.tar.gz.

File metadata

  • Download URL: pinotdb-0.3.13.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pinotdb-0.3.13.tar.gz
Algorithm Hash digest
SHA256 eba3862cac1fbe42d2d0eec14ac89500b3069e3e93cea49a65077f67199db5f8
MD5 f8c8be6f1b6a9cedf2c2c64dadd6c2cd
BLAKE2b-256 3695d81f10af95287c1d199fed44d274fc44de8c7edbc732bd0b58905bd29c52

See more details on using hashes here.

File details

Details for the file pinotdb-0.3.13-py2.py3-none-any.whl.

File metadata

  • Download URL: pinotdb-0.3.13-py2.py3-none-any.whl
  • Upload date:
  • Size: 17.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pinotdb-0.3.13-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 141f004d1d9c17c8a238bce4d806c1c4e604135492d9b6da04a71e3356a5c521
MD5 2bc0782ef3ba0c00caec21f6cd7c086f
BLAKE2b-256 6eac8bf328dcfe39d132171c2d7f3120d0ef387a2f5f69dc2d1c749d9c3553b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page