Skip to main content

Data processing and persistence components for Pip.Services in Python

Project description

Pip.Services Logo
Persistence components for Python

This module is a part of the Pip.Services polyglot microservices toolkit. It contains generic interfaces for data access components as well as abstract implementations for in-memory and file persistence.

The persistence components come in two kinds. The first kind is a basic persistence that can work with any object types and provides only minimal set of operations. The second kind is so called "identifieable" persistence with works with "identifable" data objects, i.e. objects that have unique ID field. The identifiable persistence provides a full set or CRUD operations that covers most common cases.

The module contains the following packages:

  • Core - generic interfaces for data access components.
  • Persistence - in-memory and file persistence components, as well as JSON persister class.

Quick links:

Use

Install the Python package as

pip install pip_services3_data

As an example, lets implement persistence for the following data object.

class Dummy(IStringIdentifiable):
    def __init__(self, id=None, key=None, content=None):
        self.id = id
        self.key = key
        self.content = content

Our persistence component shall implement the following interface with a basic set of CRUD operations.

class IMyPersistence(ABC):
    def get_page_by_filter(self, correlation_id: Optional[str], filter: Any,
                           paging: Union[PagingParams, None]) -> DataPage:
        raise NotImplemented()

    def get_one_by_id(self, correlation_id: Optional[str], id: str) -> T:
        raise NotImplemented()

    def get_one_by_key(self, correlation_id: Optional[str], key: List[str]) -> T:
        raise NotImplemented()

    def create(self, correlation_id: Optional[str], item: T) -> T:
        raise NotImplemented()

    def update(self, correlation_id: Optional[str], item: T) -> T:
        raise NotImplemented()

    def delete_by_id(self, correlation_id: Optional[str], id: str):
        raise NotImplemented()

To implement in-memory persistence component you shall inherit IdentifiableMemoryPersistence. Most CRUD operations will come from the base class. You only need to override get_page_by_filter method with a custom filter function. And implement a get_one_by_key custom persistence method that doesn't exist in the base class.

from pip_services3_commons.data import FilterParams, DataPage, PagingParams
from pip_services3_data.persistence.IdentifiableMemoryPersistence import IdentifiableMemoryPersistence


class MyMemoryPersistence(IdentifiableMemoryPersistence):
    def __init__(self):
        super(MyMemoryPersistence, self).__init__()

    def __composeFilter(self, filterr):
        filterr = filterr or FilterParams()
        id = filterr.get_as_nullable_string("id")
        temp_ids = filterr.get_as_nullable_string("ids")
        ids = temp_ids.split(",") if temp_ids is not None else None
        key = filterr.get_as_nullable_string("key")

        def inner(item):
            if id is not None and item['id'] != id:
                return False
            if ids is not None and item['ids'] != ids:
                return False
            if key is not None and item['key'] != key:
                return False
            return True

        return inner

    def get_page_by_filter(self, correlation_id, filter, paging, sort=None, select=None):
        return super().get_page_by_filter(correlation_id, filter, paging, sort, select)

    def get_one_by_key(self, correlation_id, key):
        for item in self._items:
            if item['key'] == key:
                self._logger.trace(correlation_id, "Found object by key={}", key)
                return item
            else:
                self._logger.trace(correlation_id, "Cannot find by key={}", key)

It is easy to create file persistence by adding a persister object to the implemented in-memory persistence component.

from pip_services3_commons.config import ConfigParams
from pip_services3_data.persistence import JsonFilePersister


class MyFilePersistence(MyMemoryPersistence):
    _persister: JsonFilePersister

    def __init__(self, path=None):
        super(MyFilePersistence, self).__init__()
        self._persister = JsonFilePersister(path)
        self._loader = self._persister
        self._saver = self._persister

    def configure(self, config: ConfigParams):
        super().configure(config)
        self._persister.configure(config)

Configuration for your microservice that includes memory and file persistence may look the following way.

...
{{#if MEMORY_ENABLED}}
- descriptor: "myservice:persistence:memory:default:1.0"
{{/if}}

{{#if FILE_ENABLED}}
- descriptor: "myservice:persistence:file:default:1.0"
  path: {{FILE_PATH}}{{#unless FILE_PATH}}"../data/data.json"{{/unless}}
{{/if}}
...

Develop

For development you shall install the following prerequisites:

  • Python 3.7+
  • Visual Studio Code or another IDE of your choice
  • Docker

Install dependencies:

pip install -r requirements.txt

Run automated tests:

python test.py

Generate API documentation:

./docgen.ps1

Before committing changes run dockerized build and test as:

./build.ps1
./test.ps1
./clear.ps1

Contacts

The Python version of Pip.Services is created and maintained by Sergey Seroukhov

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pip_services3_data-3.2.3.tar.gz (15.6 kB view details)

Uploaded Source

File details

Details for the file pip_services3_data-3.2.3.tar.gz.

File metadata

  • Download URL: pip_services3_data-3.2.3.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.2

File hashes

Hashes for pip_services3_data-3.2.3.tar.gz
Algorithm Hash digest
SHA256 e00e3d7d727e05c03fc606f3fb96b1c3e8a2c4965195a1a1128a777bd8e372ec
MD5 347e0b5b84dcddd05a19121079b9a92c
BLAKE2b-256 52ff0eb36506533b5d1a97ff08444ac9be5830b0add570755696369aeec481fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page