Skip to main content

IoC container for Pip.Services in Python

Project description

Pip.Services Logo
IoC container for Python

This module is a part of the Pip.Services polyglot microservices toolkit. It provides an inversion-of-control (IoC) container to facilitate the development of services and applications composed of loosely coupled components.

The module containes a basic in-memory container that can be embedded inside a service or application, or can be run by itself. The second container type can run as a system level process and can be configured via command line arguments. Also it can be used to create docker containers.

The containers can read configuration from JSON or YAML files use it as a recipe for instantiating and configuring components. Component factories are used to create components based on their locators (descriptor) defined in the container configuration. The factories shall be registered in containers or dynamically in the container configuration file.

The module contains the following packages:

  • Containers - Basic in-memory and process containers
  • Build - Default container factory
  • Config - Container configuration components
  • Refer - Inter-container reference management (implementation of the Referenceable pattern inside an IoC container)
  • Test - minimal set of test components to make testing easier

Quick links:

Use

Install the Python package as

pip install pip_services4_container

Create a factory to create components based on their locators (descriptors).

from pip_services4_commons.refer import Descriptor
from pip_services4_components.build import Factory


class MyFactory(Factory):
    MyComponentDescriptor = Descriptor("myservice", "mycomponent", "default", "*", "1.0")

    def __init__(self):
        super(MyFactory, self).__init__()
        self.register_as_type(MyFactory.MyComponentDescriptor, MyComponent)

Then create a process container and register the factory there. You can also register factories defined in other modules if you plan to include external components into your container.

from pip_services4_container import ProcessContainer
from pip_services3_rpc.build import DefaultRpcFactory


class MyProcess(ProcessContainer):
    def __init__(self):
        super(MyProcess, self).__init__('myservice', 'My service running as a process')

        self._factories.add(DefaultRpcFactory())
        self._factories.add(MyFactory())

Define YAML configuration file with components and their descriptors. The configuration file is pre-processed using Handlebars templating engine that allows to inject configuration parameters or dynamically include/exclude components using conditional blocks. The values for the templating engine are defined via process command line arguments or via environment variables. Support for environment variables works well in docker or other containers like AWS Lambda functions.

---
# Context information
- descriptor: "pip-services:context-info:default:default:1.0"
  name: myservice
  description: My service running in a process container

# Console logger
- descriptor: "pip-services:logger:console:default:1.0"
  level: {{LOG_LEVEL}}{{^LOG_LEVEL}}info{{/LOG_LEVEL}}

# Performance counters that posts values to log
- descriptor: "pip-services:counters:log:default:1.0"
  
# My component
- descriptor: "myservice:mycomponent:default:default:1.0"
  param1: XYZ
  param2: 987
  
{{#if HTTP_ENABLED}}
# HTTP endpoint version 1.0
- descriptor: "pip-services:endpoint:http:default:1.0"
  connection:
    protocol: "http"
    host: "0.0.0.0"
    port: {{HTTP_PORT}}{{^HTTP_PORT}}8080{{/HTTP_PORT}}

 # Default Status
- descriptor: "pip-services:status-service:http:default:1.0"

# Default Heartbeat
- descriptor: "pip-services:heartbeat-service:http:default:1.0"
{{/if}}

To instantiate and run the container we need a simple process launcher.

import sys
from MyFactory import MyFactory

try:
    proc = MyProcess()
    proc._config_path = './config/config.yml'
    proc.run()
except Exception as ex:
    sys.stderr.write(ex)

And, finally, you can run your service launcher as

python service.py

Develop

For development you shall install the following prerequisites:

  • Python 3.7+
  • Visual Studio Code or another IDE of your choice
  • Docker

Install dependencies:

pip install -r requirements.txt

Run automated tests:

python test.py

Generate API documentation:

./docgen.ps1

Before committing changes run dockerized build and test as:

./build.ps1
./test.ps1
./clear.ps1

Contacts

The Python version of Pip.Services is created and maintained by Sergey Seroukhov

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pip_services4_container-0.0.1.tar.gz (19.5 kB view details)

Uploaded Source

Built Distribution

pip_services4_container-0.0.1-py3-none-any.whl (25.6 kB view details)

Uploaded Python 3

File details

Details for the file pip_services4_container-0.0.1.tar.gz.

File metadata

File hashes

Hashes for pip_services4_container-0.0.1.tar.gz
Algorithm Hash digest
SHA256 ab32df2ffcc87fa25d495123c864b5cd25d6929988fd9a75abb1078326edd91a
MD5 9e833561797e02d0727c0b909f7f48e0
BLAKE2b-256 056b5f02b101eb02483903277c4b6674235588d83448eaf14ecb2a24e5338a61

See more details on using hashes here.

File details

Details for the file pip_services4_container-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pip_services4_container-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b7f619ff1333779c91b8b5eef2965f73bebde35c4fdae6acbd938504225afa17
MD5 61ed50aebb3529a60590af52d4636624
BLAKE2b-256 bcb41717d31b153231891db84ebed187c703c3ebab221a52c35185f77e0dacd0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page