Skip to main content

A framework for data piping in python

Project description

pipda

Pypi Github PythonVers Codacy Codacy coverage Docs building Building

A framework for data piping in python

Inspired by siuba, dfply, plydata and dplython, but with simple yet powerful APIs to mimic the dplyr and tidyr packages in python

API | Change Log | Documentation

Installation

pip install -U pipda

Usage

Verbs

  • A verb is pipeable (able to be called like data >> verb(...))
  • A verb is dispatchable by the type of its first argument
  • A verb evaluates other arguments using the first one
  • A verb is passing down the context if not specified in the arguments
import pandas as pd
from pipda import (
    register_verb,
    register_func,
    register_operator,
    evaluate_expr,
    Operator,
    Symbolic,
    Context
)

f = Symbolic()

df = pd.DataFrame({
    'x': [0, 1, 2, 3],
    'y': ['zero', 'one', 'two', 'three']
})

df

#      x    y
# 0    0    zero
# 1    1    one
# 2    2    two
# 3    3    three

@register_verb(pd.DataFrame)
def head(data, n=5):
    return data.head(n)

df >> head(2)
#      x    y
# 0    0    zero
# 1    1    one

@register_verb(pd.DataFrame, context=Context.EVAL)
def mutate(data, **kwargs):
    data = data.copy()
    for key, val in kwargs.items():
        data[key] = val
    return data

df >> mutate(z=1)
#    x      y  z
# 0  0   zero  1
# 1  1    one  1
# 2  2    two  1
# 3  3  three  1

df >> mutate(z=f.x)
#    x      y  z
# 0  0   zero  0
# 1  1    one  1
# 2  2    two  2
# 3  3  three  3

Functions used as verb arguments

# verb can be used as an argument passed to another verb
# dep=True make `data` argument invisible while calling
@register_verb(pd.DataFrame, context=Context.EVAL, dep=True)
def if_else(data, cond, true, false):
    cond.loc[cond.isin([True]), ] = true
    cond.loc[cond.isin([False]), ] = false
    return cond

# The function is then also a singledispatch generic function

df >> mutate(z=if_else(f.x>1, 20, 10))
#    x      y   z
# 0  0   zero  10
# 1  1    one  10
# 2  2    two  20
# 3  3  three  20
# function without data argument
@register_func
def length(strings):
    return [len(s) for s in strings]

df >> mutate(z=length(f.y))

#    x     y    z
# 0  0  zero    4
# 1  1   one    3
# 2  2   two    3
# 3  3 three    5

Context

The context defines how a reference (f.A, f['A'], f.A.B is evaluated)

@register_verb(pd.DataFrame, context=Context.SELECT)
def select(df, *columns):
    return df[list(columns)]

df >> select(f.x, f.y)
#    x     y
# 0  0  zero
# 1  1   one
# 2  2   two
# 3  3 three

How it works

data %>% verb(arg1, ..., key1=kwarg1, ...)

The above is a typical dplyr/tidyr data piping syntax.

The counterpart python syntax we expect is:

data >> verb(arg1, ..., key1=kwarg1, ...)

To implement that, we need to defer the execution of the verb by turning it into a Verb object, which holds all information of the function to be executed later. The Verb object won't be executed until the data is piped in. It all thanks to the executing package to let us determine the ast nodes where the function is called. So that we are able to determine whether the function is called in a piping mode.

If an argument is referring to a column of the data and the column will be involved in the later computation, the it also needs to be deferred. For example, with dplyr in R:

data %>% mutate(z=a)

is trying add a column named z with the data from column a.

In python, we want to do the same with:

data >> mutate(z=f.a)

where f.a is a Reference object that carries the column information without fetching the data while python sees it immmediately.

Here the trick is f. Like other packages, we introduced the Symbolic object, which will connect the parts in the argument and make the whole argument an Expression object. This object is holding the execution information, which we could use later when the piping is detected.

Documentation

https://pwwang.github.io/pipda/

See also datar for real-case usages.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pipda-0.13.1.tar.gz (18.6 kB view details)

Uploaded Source

Built Distribution

pipda-0.13.1-py3-none-any.whl (20.8 kB view details)

Uploaded Python 3

File details

Details for the file pipda-0.13.1.tar.gz.

File metadata

  • Download URL: pipda-0.13.1.tar.gz
  • Upload date:
  • Size: 18.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.5 Linux/6.2.0-1012-azure

File hashes

Hashes for pipda-0.13.1.tar.gz
Algorithm Hash digest
SHA256 56420cbb285a085db385a37ad267f59ba090ec1e901eb122132bd64ad5f515f9
MD5 5fd4c4c67137650662f0b4adee69b6f0
BLAKE2b-256 72ef51772bad9cb991011efcd3d99a4f052e5563da9db8439f5279e5aa8bb1fd

See more details on using hashes here.

File details

Details for the file pipda-0.13.1-py3-none-any.whl.

File metadata

  • Download URL: pipda-0.13.1-py3-none-any.whl
  • Upload date:
  • Size: 20.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.5 Linux/6.2.0-1012-azure

File hashes

Hashes for pipda-0.13.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9e9046ac507ad03ced7b63e09e2468bdc2c863c01d44233c5502b4f450461893
MD5 f8e3e40956b581743af088b386b353c1
BLAKE2b-256 768f10431c73e0e31d84e3e71264389787fe7e3cf6b3678e57684862af7d4f01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page