Skip to main content

Module enablig a sh like infix syntax (using pipes)

Project description

# Infix programming toolkit

Module enabling a sh like infix syntax (using pipes).


# Introduction

As an exemple, here is the solution for the 2nd Euler Project exercise:

> Find the sum of all the even-valued terms in Fibonacci which do not
exceed four million.

Given fib a generator of fibonacci numbers:

euler2 = fib() | where(lambda x: x % 2 == 0)
| take_while(lambda x: x < 4000000)
| add


# Vocabulary

- A Pipe: a Pipe is a 'pipeable' function, somthing that you can pipe to,
In the code '[1, 2, 3] | add' add is a Pipe
- A Pipe function: A standard function returning a Pipe so it can be used like
a normal Pipe but called like in : [1, 2, 3] | concat("#")


# Syntax

I don't like `import * `but for the following examples in an REPL it
will be OK, so:

>>> from pipe import *

The basic symtax is to use a Pipe like in a shell:

>>> [1, 2, 3] | add
6

A Pipe can be a function call, for exemple the Pipe function 'where':

>>> [1, 2, 3] | where(lambda x: x % 2 == 0) #doctest: +ELLIPSIS
<generator object ...>

A Pipe as a function is nothing more than a function returning
a specialized Pipe.


# Constructing your own

You can construct your pipes using Pipe classe initialized with lambdas like:

stdout = Pipe(lambda x: sys.stdout.write(str(x)))
select = Pipe(lambda iterable, pred: (pred(x) for x in iterable))

Or using decorators:

@Pipe
def stdout(x):
sys.stdout.write(str(x))


# Existing Pipes in this module

stdout
Outputs anything to the standard output
>>> "42" | stdout
42

lineout
Outputs anything to the standard output followed by a line break
>>> 42 | lineout
42

tee
tee outputs to the standard output and yield unchanged items, usefull for
debugging
>>> [1, 2, 3, 4, 5] | tee | add
1
2
3
4
5
15

as_list
Outputs an iterable as a list
>>> (0, 1, 2) | as_list
[0, 1, 2]

as_tuple
Outputs an iterable as a tuple
>>> [1, 2, 3] | as_tuple
(1, 2, 3)

as_dict
Outputs an iterable of tuples as a dictionary
[('a', 1), ('b', 2), ('c', 3)] | as_dict
{'a': 1, 'b': 2, 'c': 3}

concat()
Aggregates strings using given separator, or ", " by default
>>> [1, 2, 3, 4] | concat
'1, 2, 3, 4'
>>> [1, 2, 3, 4] | concat("#")
'1#2#3#4'

average
Returns the average of the given iterable
>>> [1, 2, 3, 4, 5, 6] | average
3.5

netcat
Open a socket on the given host and port, and send data to it,
Yields host reponse as it come.
netcat apply traverse to its input so it can take a string or
any iterable.

"GET / HTTP/1.0\r\nHost: google.fr\r\n\r\n" \
| netcat('google.fr', 80) \
| concat \
| stdout

netwrite
Like netcat but don't read the socket after sending data

count
Returns the length of the given iterable, counting elements one by one
>>> [1, 2, 3, 4, 5, 6] | count
6

add
Returns the sum of all elements in the preceding iterable
>>> (1, 2, 3, 4, 5, 6) | add
21

first
Returns the first element of the given iterable
>>> (1, 2, 3, 4, 5, 6) | first
1

chain
Unfold preceding Iterable of Iterables
>>> [[1, 2], [3, 4], [5]] | chain | concat
'1, 2, 3, 4, 5'

Warning : chain only unfold iterable containing ONLY iterables :
[1, 2, [3]] | chain
Gives a TypeError: chain argument #1 must support iteration
Consider using traverse

traverse
Recursively unfold iterables
>>> [[1, 2], [[[3], [[4]]], [5]]] | traverse | concat
'1, 2, 3, 4, 5'
>>> squares = (i * i for i in range(3))
>>> [[0, 1, 2], squares] | traverse | as_list
[0, 1, 2, 0, 1, 4]

select()
Apply a conversion expression given as parameter
to each element of the given iterable
>>> [1, 2, 3] | select(lambda x: x * x) | concat
'1, 4, 9'

where()
Only yields the matching items of the given iterable
>>> [1, 2, 3] | where(lambda x: x % 2 == 0) | concat
'2'

take_while()
Like itertools.takewhile, yields elements of the
given iterable while the predicat is true
>>> [1, 2, 3, 4] | take_while(lambda x: x < 3) | concat
'1, 2'

skip_while()
Like itertools.dropwhile, skips elements of the given iterable
while the predicat is true, then yields others
>>> [1, 2, 3, 4] | skip_while(lambda x: x < 3) | concat
'3, 4'

chain_with()
Like itertools.chain, yields elements of the given iterable,
then yields elements of its parameters
>>> (1, 2, 3) | chain_with([4, 5], [6]) | concat
'1, 2, 3, 4, 5, 6'

take()
Yields the given quantity of elemenets from the given iterable, like head
in shell script.
>>> (1, 2, 3, 4, 5) | take(2) | concat
'1, 2'

tail()
Yiels the given quantity of the last elements of the given iterable.
>>> (1, 2, 3, 4, 5) | tail(3) | concat
'3, 4, 5'

skip()
Skips the given quantity of elements from the given iterable, then yields
>>> (1, 2, 3, 4, 5) | skip(2) | concat
'3, 4, 5'

islice()
Just the itertools.islice
>>> (1, 2, 3, 4, 5, 6, 7, 8, 9) | islice(2, 8, 2) | concat
'3, 5, 7'

izip()
Just the itertools.izip
>>> (1, 2, 3, 4, 5, 6, 7, 8, 9) \
... | izip([9, 8, 7, 6, 5, 4, 3, 2, 1]) \
... | concat
'(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)'

aggregate()
Works as python reduce, the optional initializer must be passed as a
keyword argument
>>> (1, 2, 3, 4, 5, 6, 7, 8, 9) | aggregate(lambda x, y: x * y)
362880

>>> () | aggregate(lambda x, y: x + y, initializer=0)
0

Simulate concat :
>>> (1, 2, 3, 4, 5, 6, 7, 8, 9) \
... | aggregate(lambda x, y: str(x) + ', ' + str(y))
'1, 2, 3, 4, 5, 6, 7, 8, 9'

any()
Returns True if any element of the given iterable satisfies the predicate
>>> (1, 3, 5, 6, 7) | any(lambda x: x >= 7)
True

>>> (1, 3, 5, 6, 7) | any(lambda x: x > 7)
False

all()
Returns True if all elements of the given iterable
satisfies the given predicate
>>> (1, 3, 5, 6, 7) | all(lambda x: x < 7)
False

>>> (1, 3, 5, 6, 7) | all(lambda x: x <= 7)
True

max()
Returns the biggest element, using the given key function if
provided (or else the identity)

>>> ('aa', 'b', 'foo', 'qwerty', 'bar', 'zoog') | max(key=len)
'qwerty'
>>> ('aa', 'b', 'foo', 'qwerty', 'bar', 'zoog') | max()
'zoog'
>>> ('aa', 'b', 'foo', 'qwerty', 'bar', 'zoog') | max
'zoog'

min()
Returns the smallest element, using the key function if provided
(or else the identity)

>>> ('aa', 'b', 'foo', 'qwerty', 'bar', 'zoog') | min(key=len)
'b'
>>> ('aa', 'b', 'foo', 'qwerty', 'bar', 'zoog') | min
'aa'

groupby()
Like itertools.groupby(sorted(iterable, key = keyfunc), keyfunc)
(1, 2, 3, 4, 5, 6, 7, 8, 9) \
| groupby(lambda x: x % 2 and "Even" or "Odd")
| select(lambda x: "%s : %s" % (x[0], (x[1] | concat(', '))))
| concat(' / ')
'Even : 1, 3, 5, 7, 9 / Odd : 2, 4, 6, 8'

sort()
Like Python's built-in "sorted" primitive. Allows cmp (Python 2.x
only), key, and reverse arguments. By default sorts using the
identity function as the key.

>>> "python" | sort | concat("")
'hnopty'
>>> [5, -4, 3, -2, 1] | sort(key=abs) | concat
'1, -2, 3, -4, 5'

reverse
Like Python's built-in "reversed" primitive.
>>> [1, 2, 3] | reverse | concat
'3, 2, 1'

passed
Like Python's pass.
>>> "something" | passed


index
Returns index of value in iterable
>>> [1,2,3,2,1] | index(2)
1
>>> [1,2,3,2,1] | index(1,1)
4

strip
Like Python's strip-method for str.
>>> ' abc ' | strip
'abc'
>>> '.,[abc] ] ' | strip('.,[] ')
'abc'

rstrip
Like Python's rstrip-method for str.
>>> ' abc ' | rstrip
' abc'
>>> '.,[abc] ] ' | rstrip('.,[] ')
'.,[abc'

lstrip
Like Python's lstrip-method for str.
>>> 'abc ' | lstrip
'abc '
>>> '.,[abc] ] ' | lstrip('.,[] ')
'abc] ] '

run_with
>>> (1,10,2) | run_with(range) | as_list
[1, 3, 5, 7, 9]

t
Like Haskell's operator ":"
>>> 0 | t(1) | t(2) == range(3) | as_list
True

to_type
Typecast
>>> range(5) | add | to_type(str) | t(' is summ!') | concat('')
'10 is summ!'

permutations()
Returns all possible permutations
>>> 'ABC' | permutations(2) | concat(' ')
"('A', 'B') ('A', 'C') ('B', 'A') ('B', 'C') ('C', 'A') ('C', 'B')"

>>> range(3) | permutations | concat('-')
'(0, 1, 2)-(0, 2, 1)-(1, 0, 2)-(1, 2, 0)-(2, 0, 1)-(2, 1, 0)'

transpose()
Transposes the rows and columns of a matrix
>>> [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | transpose
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]


# Euler project samples

> Find the sum of all the multiples of 3 or 5 below 1000.

euler1 = (itertools.count() | select(lambda x: x * 3) | take_while(lambda x: x < 1000) | add) \
+ (itertools.count() | select(lambda x: x * 5) | take_while(lambda x: x < 1000) | add) \
- (itertools.count() | select(lambda x: x * 15) | take_while(lambda x: x < 1000) | add)
assert euler1 == 233168

> Find the sum of all the even-valued terms in Fibonacci which do not exceed four million.

euler2 = fib() | where(lambda x: x % 2 == 0) | take_while(lambda x: x < 4000000) | add
assert euler2 == 4613732

> Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

square = lambda x: x * x
euler6 = square(itertools.count(1) | take(100) | add) - (itertools.count(1) | take(100) | select(square) | add)
assert euler6 == 25164150

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pipe-1.4.2.tar.gz (8.9 kB view details)

Uploaded Source

File details

Details for the file pipe-1.4.2.tar.gz.

File metadata

  • Download URL: pipe-1.4.2.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pipe-1.4.2.tar.gz
Algorithm Hash digest
SHA256 84655b9ccbb049d869b1ecf5df0c6f4676ef502ce003eb4b09f04a6e71b6960e
MD5 b0f8eeab6368df806290d8744d91bc59
BLAKE2b-256 5fb0e078169700e5653788ba8ebc59f7af2e91cc7fec30d043c5a47b8415d8b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page