Skip to main content

Singer.io tap for extracting data from Kafka topic - PipelineWise compatible

Project description

pipelinewise-tap-kafka

PyPI version PyPI - Python Version License: MIT

This is a Singer tap that reads data from Kafka topic and produces JSON-formatted data following the Singer spec.

This is a PipelineWise compatible target connector.

How to use it

The recommended method of running this tap is to use it from PipelineWise. When running it from PipelineWise you don't need to configure this tap with JSON files and most of things are automated. Please check the related documentation at Kafka

If you want to run this Singer Tap independently please read further.

Install and Run

First, make sure Python 3 is installed on your system or follow these installation instructions for Mac or Ubuntu.

It's recommended to use a virtualenv:

  python3 -m venv venv
  pip install pipelinewise-tap-kafka

or

  python3 -m venv venv
  . venv/bin/activate
  pip install --upgrade pip
  pip install .

Configuration

Create a config.json

{
  "bootstrap_servers": "foo.com,bar.com",
  "group_id": "my_group",
  "topic": "my_topic",
  "primary_keys": {
    "id": "/path/to/primary_key"
  }
}

Full list of options in config.json:

Property Type Required? Description
bootstrap_servers String Yes host[:port] string (or list of comma separated host[:port] strings) that the consumer should contact to bootstrap initial cluster metadata.
group_id String Yes The name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets.
topic String Yes Name of kafka topic to subscribe to
partitions List (Default: [] (all)) Partition(s) of topic to consume, example [0,4]
primary_keys Object Optionally you can define primary key for the consumed messages. It requires a column name and /slashed/paths ala xpath selector to extract the value from the kafka messages. The extracted column will be added to every output singer message.
use_message_key Bool (Default: true) Defines whether to use Kafka message key as a primary key for the record. Note: if a custom primary key(s) has been defined, it will be used instead of the message_key.
initial_start_time String (Default: latest) Start time reference of the message consumption if no bookmarked position in state.json. One of: beginning, earliest, latest or an ISO-8601 formatted timestamp string.
max_runtime_ms Integer (Default: 300000) The maximum time for the tap to collect new messages from Kafka topic. If this time exceeds it will flush the batch and close kafka connection.
commit_interval_ms Integer (Default: 5000) Number of milliseconds between two commits. This is different than the kafka auto commit feature. Tap-kafka sends commit messages automatically but only when the data consumed successfully and persisted to local store.
consumer_timeout_ms Integer (Default: 10000) KafkaConsumer setting. Number of milliseconds to block during message iteration before raising StopIteration
session_timeout_ms Integer (Default: 30000) KafkaConsumer setting. The timeout used to detect failures when using Kafka’s group management facilities.
heartbeat_interval_ms Integer (Default: 10000) KafkaConsumer setting. The expected time in milliseconds between heartbeats to the consumer coordinator when using Kafka’s group management facilities.
max_poll_interval_ms Integer (Default: 300000) KafkaConsumer setting. The maximum delay between invocations of poll() when using consumer group management.
message_format String (Default: json) Supported message formats are json and protobuf.
proto_schema String Protobuf message format in .proto syntax. Required if the message_format is protobuf.
proto_classes_dir String (Default: current working dir)
debug_contexts String comma separated list of debug contexts to enable for the consumer see librkafka

This tap reads Kafka messages and generating singer compatible SCHEMA and RECORD messages in the following format.

Property Name Description
MESSAGE_TIMESTAMP Timestamp extracted from the kafka metadata
MESSAGE_OFFSET Offset extracted from the kafka metadata
MESSAGE_PARTITION Partition extracted from the kafka metadata
MESSAGE The original Kafka message
MESSAGE_KEY (Optional) Added by default (can be overridden) in case no custom keys defined
DYNAMIC_PRIMARY_KEY(S) (Optional) Dynamically added primary key values, extracted from the Kafka message

Run the tap in Discovery Mode

tap-kafka --config config.json --discover                # Should dump a Catalog to stdout
tap-kafka --config config.json --discover > catalog.json # Capture the Catalog

Add Metadata to the Catalog

Each entry under the Catalog's "stream" key will need the following metadata:

{
  "streams": [
    {
      "stream_name": "my_topic"
      "metadata": [{
        "breadcrumb": [],
        "metadata": {
          "selected": true,
        }
      }]
    }
  ]
}

Run the tap in Sync Mode

tap-kafka --config config.json --properties catalog.json

The tap will write bookmarks to stdout which can be captured and passed as an optional --state state.json parameter to the tap for the next sync.

To run tests:

  1. Install python test dependencies in a virtual env and run nose unit and integration tests
  python3 -m venv venv
  . venv/bin/activate
  pip install --upgrade pip
  pip install -e .[test]
  1. To run unit tests:
  make unit_test
  1. To run integration test:
  make integration_test

To run pylint:

  1. Install python dependencies and run python linter
  python3 -m venv venv
  . venv/bin/activate
  pip install --upgrade pip
  pip install -e .[test]
  pylint tap_kafka -d C,W,unexpected-keyword-arg,duplicate-code

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pipelinewise-tap-kafka-8.2.1.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

pipelinewise_tap_kafka-8.2.1-py3-none-any.whl (26.2 kB view details)

Uploaded Python 3

File details

Details for the file pipelinewise-tap-kafka-8.2.1.tar.gz.

File metadata

File hashes

Hashes for pipelinewise-tap-kafka-8.2.1.tar.gz
Algorithm Hash digest
SHA256 0ba70da1f915b7598976154db8554b35a9e97614e88b6e007461eff08825c56c
MD5 7dbba9bce1f265a66b09b5c02fdceb9e
BLAKE2b-256 4449bd7ff71c48db246c645361df0a279e4bf3b8e26e2143e3b4ad6d741dcbc2

See more details on using hashes here.

File details

Details for the file pipelinewise_tap_kafka-8.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pipelinewise_tap_kafka-8.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 67f0e6a65648c4a09c4ca07fc8bb8803c145d95bb169b41f6668cf470e7c70c1
MD5 d4c079a0fda329287eb4699b8e8e61e7
BLAKE2b-256 f96062d996c47e5ad68ef6d4c31a027ef6d9541b29c927be443bb11a40ac88c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page