Skip to main content

PiperRider CLI

Project description

PipeRider

Code review of data in dbt

ci-tests release pipy python downloads license InfuseAI Discord Invite

Docs | Roadmap | Discord | Blog

Code review for data in dbt

PipeRider automatically compares your data to highlight the difference in impacted downstream dbt models so you can merge your Pull Requests with confidence.

How it works:

  1. Easy to connect your datasource -> PipeRider leverages the connection profiles in your dbt project to connect to the data warehouse
  2. Generate profiling statistics of your models to get a high-level overview of your data
  3. Compare local changes with the main branch in a HTML report
  4. Post a quick summary of the data changes to your PR, so others can be confident too

Core concepts

  • Easy to install: Leveraging dbt's configuration settings, PipeRider can be installed within 2 minutes
  • Fast comparison: by collecting profiling statistics (e.g. uniqueness, averages, quantiles, histogram) and metric queries, comparing downstream data impact takes little time, speeding up your team's review time
  • Valuable insights: various profiling statistics displayed in the HTML report give fast insights into your data

Quickstart

1. Install PipeRider

Navigate to your dbt folder, and install pipeirder.

pip install piperider

PipeRider supports the following data connectors

connectors install
snowflake pip install 'piperider[snowflake]'
postgres pip install 'piperider[postgres]'
bigquery pip install 'piperider[bigquery]'
redshift pip install 'piperider[redshift]'
parquet pip install 'piperider[parquet]'
csv pip install 'piperider[csv]'
duckdb pip install 'piperider[duckdb]'

2. Initialize PipeRider

Go to your dbt project, and initalize PipeRider.

piperider init

3. Run PipeRider

Collect profiling statistics by using

piperider run

4. Run PipeRider in another branch

Go to another branch to compare your local changes, by running

dbt build
piperider run --open

5. Compare your changes

You then can compare the branch of your new Pull Request against the main branch and explore the impact of your changes by opening the generated HTML comparison report

piperider compare-reports --last

6. Add a markdown summary

You can add a Markdown summary of the data changes to your Pull Request, so that your reviewer can merge with confidence.

Markdown summaries and reports are stored in .piperider/comparisons/<timestamp>

Features

  • Use PipeRider for exploratory data analysis by doing piperider run to view the profiling statistics of a single data source, even in an environment that doesn't use dbt
  • Leverage dbt-defined metrics to have a quick overview of the impact on your most important metrics
  • Include PipeRider into your CI process via PipeRider Cloud or self-hosted to be confident of every PRs that is submitted
  • Benefit from dbt's features such as Slim CI, custom schema, custom database, node selection, dbt test result

PipeRider Cloud (beta)

PipeRider Cloud offers a hosted version for HTML reports, including features such as alerts and historical trend watching. Get early beta access by signing up on our website: https://piperider.io

Example Report Demo

See Generated Single-Run Report

See Comparison Report

Development

See setup dev environment and the contributing guildlines to get started.

We love chatting with our users! Let us know if you have any questions, feedback, or need help trying out PipeRider! :heart:

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

piperider-nightly-0.19.0.20230213.tar.gz (3.6 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file piperider-nightly-0.19.0.20230213.tar.gz.

File metadata

File hashes

Hashes for piperider-nightly-0.19.0.20230213.tar.gz
Algorithm Hash digest
SHA256 3d715cfb3039be4e5a39f250aeaf62585ef5ef9e18c090b6765f0da1aeda49bf
MD5 96a8c557077e6926765566d0fdcb4735
BLAKE2b-256 4f73660988410bca927ab5a21265e92352a6d53b225a1b4337770b39a9592f49

See more details on using hashes here.

File details

Details for the file piperider_nightly-0.19.0.20230213-py3-none-any.whl.

File metadata

File hashes

Hashes for piperider_nightly-0.19.0.20230213-py3-none-any.whl
Algorithm Hash digest
SHA256 8f02faff495d71a44c0646948c8a07023299d12cd30ba2658ccf9e730842457e
MD5 eb5dff6132fd3adf9eb3315b6ebedb97
BLAKE2b-256 e1f98a53ed66b826bd3379fbd98b490674197b3b7d42272898e5663f653cac5d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page