Skip to main content

PiperRider CLI

Project description

ci-tests release pipy python downloads license InfuseAI Discord Invite

Docs | Roadmap | Discord | Blog

Code review for data in dbt

PipeRider automatically compares your data to highlight the difference in impacted downstream dbt models so you can merge your Pull Requests with confidence.

How it works:

  • Easy to connect your datasource -> PipeRider leverages the connection profiles in your dbt project to connect to the data warehouse
  • Generate profiling statistics of your models to get a high-level overview of your data
  • Compare target branch changes with the main branch in a HTML report
  • Post a quick summary of the data changes to your PR, so others can be confident too

Core concepts

  • Easy to install: Leveraging dbt's configuration settings, PipeRider can be installed within 2 minutes
  • Fast comparison: by collecting profiling statistics (e.g. uniqueness, averages, quantiles, histogram) and metric queries, comparing downstream data impact takes little time, speeding up your team's review time
  • Valuable insights: various profiling statistics displayed in the HTML report give fast insights into your data

Quickstart

  1. Install PipeRider

    pip install piperider[<connector>]
    

    PipeRider supports the following data connectors

    connectors install
    snowflake pip install 'piperider[snowflake]'
    postgres pip install 'piperider[postgres]'
    bigquery pip install 'piperider[bigquery]'
    redshift pip install 'piperider[redshift]'
    parquet pip install 'piperider[parquet]'
    csv pip install 'piperider[csv]'
    duckdb pip install 'piperider[duckdb]'
  2. Initialize PipeRider: Go to your dbt project, and initialize PipeRider.

    piperider init
    
  3. Run PipeRider: Collect profiling statistics by using

    dbt build
    piperider run
    
  4. Compare your changes: You then can compare the branch of your new Pull Request against the main branch and explore the impact of your changes by opening the generated HTML comparison report

    git switch feature/pr-branch
    dbt build
    piperider run
    piperider compare-reports --last
    
  5. Post the markdown summary on the PR: You can post the markdown summary of the data changes to your Pull Request comment, so that your reviewer can merge with confidence.

Features

  • Use PipeRider for exploratory data analysis by doing piperider run to view the profiling statistics of a single data source, even in an environment that doesn't use dbt
  • Leverage dbt-defined metrics to have a quick overview of the impact on your most important metrics
  • Include PipeRider into your CI process via PipeRider Cloud or self-hosted to be confident of every PRs that is submitted
  • Benefit from dbt's features such as Slim CI, custom schema, custom database, node selection, dbt test result

Example Report Demo

We use the example project git-repo-analytics to demonstrate how to use piperider+dbt+duckdb to analyze dbt-core repository. Here is the generated result (daily update)

Run Report

Comparison Report

Comparison Summary in a PR

PipeRider Cloud (beta)

PipeRider Cloud offers a hosted version for HTML reports, including features such as alerts and historical trend watching. Get early beta access by signing up on our website: https://piperider.io

Development

See setup dev environment and the contributing guildlines to get started.

We love chatting with our users! Let us know if you have any questions, feedback, or need help trying out PipeRider! :heart:

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

piperider-nightly-0.22.0.20230329.tar.gz (3.8 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file piperider-nightly-0.22.0.20230329.tar.gz.

File metadata

File hashes

Hashes for piperider-nightly-0.22.0.20230329.tar.gz
Algorithm Hash digest
SHA256 91707acab0c797ad3eb775d9b37acda240e90a975eae1c1b50d684da4a5f1648
MD5 6857eea710101ec7e1bc77c5c3a11cdf
BLAKE2b-256 a36b86106f32bc11327c417ad64be4e5f4b08c7dc01c2ed5c1bf26d2a632ee18

See more details on using hashes here.

File details

Details for the file piperider_nightly-0.22.0.20230329-py3-none-any.whl.

File metadata

File hashes

Hashes for piperider_nightly-0.22.0.20230329-py3-none-any.whl
Algorithm Hash digest
SHA256 8a1a890b4d9f89ab3ca5a1757bd2bdcc00d7e877ef6efad7228d376cd33be073
MD5 8b7320f2b01b8929da48ddf08c3b2b28
BLAKE2b-256 a33e10dfae3b1b132c430fc67ee779c95e755a8365b7cc35eafc13fbd23abbca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page