Skip to main content

High-level Linear Programming solver using the Simplex algorithm

Project description

No fuss Linear Programming solver

from pivotal import minimize, maximize, Variable

x = Variable("x")
y = Variable("y")
z = Variable("z")

objective = 2*x + y + 3*z
constraints = (
    x - y == 4,
    y + 2*z == 2
)

minimize(objective, constraints)
# -> value: 11.0
# -> variables: {'x': 4.0, 'y': 0.0, 'z': 1.0}

maximize(objective, constraints)
# -> value: 14.0
# -> variables: {'x': 6.0, 'y': 2.0, 'z': 0.0}

About

Pivotal is not aiming to compete with commerical solvers like Gurobi. Rather, it is aiming to simplify the process of creating and solving linear programs thanks to its very simple and intuitive API. The solver itself uses a 2-phase Simplex algorithm.

Installation

Python >=3.10 is required.

Install via pip:

pip install pivotal-solver

API

Variables

Variable instances implement __add__, __sub__ and other magic methods, so you can use them directly in expressions such as 2*x + 10 - y.

Here are some examples of what you can do with them:

x = Variable("x")
y = Variable("y")
z = Variable("z")

2*x + 10 - y
x + (y - z)*10
-x
-(x + y)
sum([x, y, z])

X = [Variable(f"x{i}") for i in range(5)]
sum(X)

Note that variables are considered equal if they have the same name, so for examples this expression:

Variable("x") + 2 + Variable("x")

will be treated as simply 2*x+2.

The first argument to minimize and maximize is the objective function which must be either a single variable or a linear combination as in the example above.

Constraints

There are three supported constraints: == (equality), >= (greater than or equal) and <= (less than or equal). You create a constraint simply by using these comparisons in expressions involving Variable instances. For example:

x = Variable("x")
y = Variable("y")
z = Variable("z")

x == 4
2*x - y == z + 7
y >= -x + 3*z
x <= 0

There is no need to convert your constraints to the canonical form which uses only equality constraints. This is done automatically by the solver.

minimize and maximize expect a list of constraints as the second argument.

Output

The return value of minimize and maximize is a 2-tuple containing the value of the objective function and a dictionary of variables and their values.

The functions may raise pivotal.Infeasible if the program is over-constrained (no solution exists) or pivotal.Unbounded if the program is under-constrained (the objective can be made arbitrarily small).

from pivotal import minimize, maximize, Variable, Infeasible

x = Variable("x")
y = Variable("y")

objective = 2*x + y
constraints = (
    x + 2*y == 4,
    x + y == 10
)

try:
    minimize(objective, constraints)
except Infeasible:
    print("No solution")

Iterations & Tolerance

minimize and maximize take two keyword arguments max_iterations and tolerance. max_iterations (default math.inf) controls the maximum number of iterations of the second phase of the Simplex algorithm. If the maximum number of iterations is reached a potentially non-optimal solution is returned. tolerance (default 1e-6) controls the precision of floating point comparisons, e.g. when comparing against zero. Instead of x == 0.0, the algorithm considers a value to be zero when it is within the given tolerance: abs(x) <= tolerance.

Limitations

  • Currently, all variables are assumed to be positive

TODO (Contributions welcome)

  • ✔️ Setting tolerance & max number of iterations
  • (WIP) Arbitrary variable bounds, e.g. a <= x <= b
  • (WIP) Support for absolute values
  • MILP solver with branch & bound

Development

Setting up

git clone https://github.com/tomasr8/pivotal.git
cd pivotal
python -m venv venv
source venv/bin/activate
pip install -e ".[dev]"

Running tests

pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pivotal-solver-0.0.3.tar.gz (3.2 MB view details)

Uploaded Source

Built Distribution

pivotal_solver-0.0.3-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file pivotal-solver-0.0.3.tar.gz.

File metadata

  • Download URL: pivotal-solver-0.0.3.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pivotal-solver-0.0.3.tar.gz
Algorithm Hash digest
SHA256 56bae3e432e4760b3aba560326ac05c1ff411ad1863e379df66f033bda542947
MD5 29ea78ef225e5cafafa21aacbc0d3973
BLAKE2b-256 22bc0baf0bbe177cc9f4b1745377d242c6743e158fea5c2c62afc84c49530476

See more details on using hashes here.

File details

Details for the file pivotal_solver-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for pivotal_solver-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0e9aeca5e6e490928d9a4d86f8fe4c6a297072aae76e525add514a06f08ab038
MD5 3bcf9df002c5d62a2f69da9f69d84a92
BLAKE2b-256 f121c52ea432f722b71f7000ec1ea05a312c0167d233f8e14dc742ceb098ee7c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page