Skip to main content

PivotTable.js integration for Jupyter/IPython Notebook

Project description

Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

Installation

pip install pivottablejs

Usage

import pandas as pd
df = pd.read_csv("some_input.csv")

from pivottablejs import pivot_ui

pivot_ui(df)

Advanced Usage

Include any option to PivotTable.js’s pivotUI() function as a keyword argument.

pivot_ui(df, rows=['row_name'], cols=['col_name'])

Independently control the output file path and the URL used to access it from Jupyter, in case the default relative-URL behaviour is incompatible with Jupyter’s settings.

pivot_ui(df, outfile_path="/x/y.html", url="http://localhost/a/b/x.html")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pivottablejs, version 0.7.0
Filename, size File type Python version Upload date Hashes
Filename, size pivottablejs-0.7.0-py2.py3-none-any.whl (4.6 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size pivottablejs-0.7.0.tar.gz (3.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page