Skip to main content

Pixeltable: The Multimodal AI Data Plane

Project description

Pixeltable

AI Data Infrastructure — Declarative, Multimodal, and Incremental

License PyPI - Python Version Platform Support
tests status tests status PyPI Package My Discord (1306431018890166272) Visit our Hugging Face space

Installation | Documentation | API Reference | Code Samples | Computer Vision | LLM

Pixeltable is a Python library providing a declarative interface for multimodal data (text, images, audio, video). It features built-in versioning, lineage tracking, and incremental updates, enabling users to store, transform, index, and iterate on data for their ML workflows.

Data transformations, model inference, and custom logic are embedded as computed columns.

💾 Installation

pip install pixeltable

Pixeltable is persistent. Unlike in-memory Python libraries such as Pandas, Pixeltable is a database.

💡 Getting Started

Learn how to create tables, populate them with data, and enhance them with built-in or user-defined transformations.

Topic Notebook Topic Notebook
10-Minute Tour of Pixeltable Open In Colab Tables and Data Operations Open In Colab
User-Defined Functions (UDFs) Open In Colab Object Detection Models Open In Colab
Incremental Prompt Engineering Open In Github Working with External Files Open In Colab
Integrating with Label Studio Visit our documentation Audio/Video Transcript Indexing Open In Colab
Multimodal Application Visit our documentation Document Indexing and RAG Open In Colab

🧱 Code Samples

Import media data into Pixeltable (videos, images, audio...)

import pixeltable as pxt

v = pxt.create_table('external_data.videos', {'video': pxt.Video})

prefix = 's3://multimedia-commons/'
paths = [
    'data/videos/mp4/ffe/ffb/ffeffbef41bbc269810b2a1a888de.mp4',
    'data/videos/mp4/ffe/feb/ffefebb41485539f964760e6115fbc44.mp4',
    'data/videos/mp4/ffe/f73/ffef7384d698b5f70d411c696247169.mp4'
]
v.insert({'video': prefix + p} for p in paths)

Learn how to work with data in Pixeltable.

Object detection in images using DETR model

import pixeltable as pxt
from pixeltable.functions import huggingface

# Create a table to store data persistently
t = pxt.create_table('image', {'image': pxt.Image})

# Insert some images
prefix = 'https://upload.wikimedia.org/wikipedia/commons'
paths = [
    '/1/15/Cat_August_2010-4.jpg',
    '/e/e1/Example_of_a_Dog.jpg',
    '/thumb/b/bf/Bird_Diversity_2013.png/300px-Bird_Diversity_2013.png'
]
t.insert({'image': prefix + p} for p in paths)

# Add a computed column for image classification
t.add_computed_column(classification=huggingface.detr_for_object_detection(
    t.image,
    model_id='facebook/detr-resnet-50'
))

# Retrieve the rows where cats have been identified
t.select(animal = t.image,
         classification = t.classification.label_text[0]) \
.where(t.classification.label_text[0]=='cat').head()

Learn about computed columns and object detection: Comparing object detection models.

Extend Pixeltable's capabilities with user-defined functions

@pxt.udf
def draw_boxes(img: PIL.Image.Image, boxes: list[list[float]]) -> PIL.Image.Image:
    result = img.copy()  # Create a copy of `img`
    d = PIL.ImageDraw.Draw(result)
    for box in boxes:
        d.rectangle(box, width=3)  # Draw bounding box rectangles on the copied image
    return result

Learn more about user-defined functions: UDFs in Pixeltable.

Automate data operations with views, e.g., split documents into chunks

# In this example, the view is defined by iteration over the chunks of a DocumentSplitter
chunks_table = pxt.create_view(
    'rag_demo.chunks',
    documents_table,
    iterator=DocumentSplitter.create(
        document=documents_table.document,
        separators='token_limit', limit=300)
)

Learn how to leverage views to build your RAG workflow.

Evaluate model performance

# The computation of the mAP metric can become a query over the evaluation output
frames_view.select(mean_ap(frames_view.eval_yolox_tiny), mean_ap(frames_view.eval_yolox_m)).show()

Learn how to leverage Pixeltable for Model analytics.

Working with inference services

chat_table = pxt.create_table('together_demo.chat', {'input': pxt.String})

# The chat-completions API expects JSON-formatted input:
messages = [{'role': 'user', 'content': chat_table.input}]

# This example shows how additional parameters from the Together API can be used in Pixeltable
chat_table.add_computed_column(
    output=chat_completions(
        messages=messages,
        model='mistralai/Mixtral-8x7B-Instruct-v0.1',
        max_tokens=300,
        stop=['\n'],
        temperature=0.7,
        top_p=0.9,
        top_k=40,
        repetition_penalty=1.1,
        logprobs=1,
        echo=True
    )
)
chat_table.add_computed_column(
    response=chat_table.output.choices[0].message.content
)

# Start a conversation
chat_table.insert([
    {'input': 'How many species of felids have been classified?'},
    {'input': 'Can you make me a coffee?'}
])
chat_table.select(chat_table.input, chat_table.response).head()

Learn how to interact with inference services such as Together AI in Pixeltable.

Text and image similarity search on video frames with embedding indexes

import pixeltable as pxt
from pixeltable.functions.huggingface import clip_image, clip_text
from pixeltable.iterators import FrameIterator
import PIL.Image

video_table = pxt.create_table('videos', {'video': pxt.Video})

video_table.insert([{'video': '/video.mp4'}])

frames_view = pxt.create_view(
    'frames', video_table, iterator=FrameIterator.create(video=video_table.video))

@pxt.expr_udf
def embed_image(img: PIL.Image.Image):
    return clip_image(img, model_id='openai/clip-vit-base-patch32')

@pxt.expr_udf
def str_embed(s: str):
    return clip_text(s, model_id='openai/clip-vit-base-patch32')

# Create an index on the 'frame' column that allows text and image search
frames_view.add_embedding_index('frame', string_embed=str_embed, image_embed=embed_image)

# Now we will retrieve images based on a sample image
sample_image = '/image.jpeg'
sim = frames_view.frame.similarity(sample_image)
frames_view.order_by(sim, asc=False).limit(5).select(frames_view.frame, sim=sim).collect()

# Now we will retrieve images based on a string
sample_text = 'red truck'
sim = frames_view.frame.similarity(sample_text)
frames_view.order_by(sim, asc=False).limit(5).select(frames_view.frame, sim=sim).collect()

Learn how to work with Embedding and Vector Indexes.

🔄 AI Stack Comparison

🎯 Computer Vision Workflows

Requirement Traditional Pixeltable
Frame Extraction ffmpeg + custom code Automatic via FrameIterator
Object Detection Multiple scripts + caching Single computed column
Video Indexing Custom pipelines + Vector DB Native similarity search
Annotation Management Separate tools + custom code Label Studio integration
Model Evaluation Custom metrics pipeline Built-in mAP computation

🤖 LLM Workflows

Requirement Traditional Pixeltable
Document Chunking Tool + custom code Native DocumentSplitter
Embedding Generation Separate pipeline + caching Computed columns
Vector Search External vector DB Built-in vector indexing
Prompt Management Custom tracking solution Version-controlled columns
Chain Management Tool + custom code Computed column DAGs

🎨 Multimodal Workflows

Requirement Traditional Pixeltable
Data Types Multiple storage systems Unified table interface
Cross-Modal Search Complex integration Native similarity support
Pipeline Orchestration Multiple tools (Airflow, etc.) Single declarative interface
Asset Management Custom tracking system Automatic lineage
Quality Control Multiple validation tools Computed validation columns

❓ FAQ

What is Pixeltable?

Pixeltable unifies data storage, versioning, and indexing with orchestration and model versioning under a declarative table interface, with transformations, model inference, and custom logic represented as computed columns.

What problems does Pixeltable solve?

Today's solutions for AI app development require extensive custom coding and infrastructure plumbing. Tracking lineage and versions between and across data transformations, models, and deployments is cumbersome. Pixeltable lets ML Engineers and Data Scientists focus on exploration, modeling, and app development without dealing with the customary data plumbing.

What does Pixeltable provide me with? Pixeltable provides:

  • Data storage and versioning
  • Combined Data and Model Lineage
  • Indexing (e.g. embedding vectors) and Data Retrieval
  • Orchestration of multimodal workloads
  • Incremental updates
  • Code is automatically production-ready

Why should you use Pixeltable?

  • It gives you transparency and reproducibility
    • All generated data is automatically recorded and versioned
    • You will never need to re-run a workload because you lost track of the input data
  • It saves you money
    • All data changes are automatically incremental
    • You never need to re-run pipelines from scratch because you’re adding data
  • It integrates with any existing Python code or libraries
    • Bring your ever-changing code and workloads
    • You choose the models, tools, and AI practices (e.g., your embedding model for a vector index); Pixeltable orchestrates the data

What is Pixeltable not providing?

  • Pixeltable is not a low-code, prescriptive AI solution. We empower you to use the best frameworks and techniques for your specific needs.
  • We do not aim to replace your existing AI toolkit, but rather enhance it by streamlining the underlying data infrastructure and orchestration.

[!TIP] Check out the Integrations section, and feel free to submit a request for additional ones.

🤝 Contributing to Pixeltable

We're excited to welcome contributions from the community! Here's how you can get involved:

🐛 Report Issues

  • Found a bug? Open an issue
  • Include steps to reproduce and environment details

💡 Submit Changes

💬 Join the Discussion

  • Have questions? Start a Discussion
  • Share your Pixeltable projects and use cases
  • Help others in the community

📝 Improve Documentation

  • Suggest examples and tutorials
  • Propose improvements

🏢 License

This library is licensed under the Apache 2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pixeltable-0.2.25.tar.gz (266.7 kB view details)

Uploaded Source

Built Distribution

pixeltable-0.2.25-py3-none-any.whl (327.3 kB view details)

Uploaded Python 3

File details

Details for the file pixeltable-0.2.25.tar.gz.

File metadata

  • Download URL: pixeltable-0.2.25.tar.gz
  • Upload date:
  • Size: 266.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.9.20 Darwin/23.4.0

File hashes

Hashes for pixeltable-0.2.25.tar.gz
Algorithm Hash digest
SHA256 fb1a7d12dffc83ef831896cb769184249b28933ad7fab83eb3d35f3d12139647
MD5 e9c390cbaef9acef6f496161ab78432e
BLAKE2b-256 16ef29150693d019a5c9166ce9ab2b30a08c0d7afe4d90c4023a9821aebcfb27

See more details on using hashes here.

File details

Details for the file pixeltable-0.2.25-py3-none-any.whl.

File metadata

  • Download URL: pixeltable-0.2.25-py3-none-any.whl
  • Upload date:
  • Size: 327.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.9.20 Darwin/23.4.0

File hashes

Hashes for pixeltable-0.2.25-py3-none-any.whl
Algorithm Hash digest
SHA256 4ff2ab14d3181af44fe596761d48943cf80addd126049a54fc6072306e679038
MD5 4b0252a6aceddedc8e31d18b6b473cf3
BLAKE2b-256 5961c61ff217b8ff1b34ab9baa78b15173d2775c224dbeaba16e138263ecdd1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page