Skip to main content

AI Data Infrastructure: Declarative, Multimodal, and Incremental

Project description

Pixeltable Logo

The only open source Python library providing declarative data infrastructure for building multimodal AI applications, enabling incremental storage, transformation, indexing, retrieval, and orchestration of data.

License tests status nightly status stress-tests status PyPI Package My Discord (1306431018890166272)

Quick Start | Documentation | API Reference | Sample Apps | Discord Community


Installation

pip install pixeltable

Pixeltable replaces the complex multi-system architecture needed for AI applications with a single declarative table interface that natively handles multimodal data like images, videos, and documents.

Demo

https://github.com/user-attachments/assets/b50fd6df-5169-4881-9dbe-1b6e5d06cede

Quick Start

With Pixeltable, you define your entire data processing and AI workflow declaratively using computed columns on tables. Focus on your application logic, not the data plumbing.

# Installation
pip install -qU torch transformers openai pixeltable

# Basic setup
import pixeltable as pxt

# Table with multimodal column types (Image, Video, Audio, Document)
t = pxt.create_table('images', {'input_image': pxt.Image})

# Computed columns: define transformation logic once, runs on all data
from pixeltable.functions import huggingface

# Object detection with automatic model management
t.add_computed_column(
    detections=huggingface.detr_for_object_detection(
        t.input_image,
        model_id='facebook/detr-resnet-50'
    )
)

# Extract specific fields from detection results
t.add_computed_column(detections_text=t.detections.label_text)

# OpenAI Vision API integration with built-in rate limiting and async management
from pixeltable.functions import openai

t.add_computed_column(
    vision=openai.vision(
        prompt="Describe what's in this image.",
        image=t.input_image,
        model='gpt-4o-mini'
    )
)

# Insert data directly from an external URL
# Automatically triggers computation of all computed columns
t.insert(input_image='https://raw.github.com/pixeltable/pixeltable/release/docs/resources/images/000000000025.jpg')

# Query - All data, metadata, and computed results are persistently stored
# Structured and unstructured data are returned side-by-side
results = t.select(
    t.input_image,
    t.detections_text,
    t.vision
).collect()

What Pixeltable Handles

When you run the code above, Pixeltable automatically handles data storage, transformation, AI inference, vector indexing, incremental updates, and versioning. See Key Principles for details.

You Write Pixeltable Does
pxt.Image, pxt.Video, pxt.Document columns Stores media, handles formats, caches from URLs
add_computed_column(fn(...)) Runs incrementally, caches results, retries failures
add_embedding_index(column) Manages vector storage, keeps index in sync
@pxt.udf / @pxt.query Creates reusable functions with dependency tracking
table.insert(...) Triggers all dependent computations automatically
table.select(...).collect() Returns structured + unstructured data together
(nothing—it's automatic) Versions all data and schema changes for time-travel

Deployment options: Pixeltable can serve as your full backend (managing media locally or syncing with S3/GCS/Azure, plus built-in vector search and orchestration) or as an orchestration layer alongside your existing infrastructure.

Where Did My Data Go?

Pixeltable workloads generate various outputs, including both structured outputs (such as bounding boxes for detected objects) and unstructured outputs (such as generated images or video). By default, everything resides in your Pixeltable user directory at ~/.pixeltable. Structured data is stored in a Postgres instance in ~/.pixeltable. Generated media (images, video, audio, documents) are stored outside the Postgres database, in separate flat files in ~/.pixeltable/media. Those media files are referenced by URL in the database, and Pixeltable provides the "glue" for a unified table interface over both structured and unstructured data.

In general, the user is not expected to interact directly with the data in ~/.pixeltable; the data store is fully managed by Pixeltable and is intended to be accessed through the Pixeltable Python SDK.

See Working with External Files for details on loading data from URLs, S3, and local paths.

Key Principles

Store: Unified Multimodal Interface

pxt.Image, pxt.Video, pxt.Audio, pxt.Document, pxt.Json – manage diverse data consistently.

t = pxt.create_table(
   'media',
   {
       'img': pxt.Image,
       'video': pxt.Video,
       'audio': pxt.Audio,
       'document': pxt.Document,
       'metadata': pxt.Json
   }
)

Type System · Tables & Data

Orchestrate: Declarative Computed Columns

Define processing steps once; they run automatically on new/updated data. Supports API calls (OpenAI, Anthropic, Gemini), local inference (Hugging Face, YOLOX, Whisper), vision models, and any Python logic.

# LLM API call
t.add_computed_column(
   summary=openai.chat_completions(
       messages=[{"role": "user", "content": t.text}], model='gpt-4o-mini'
   )
)

# Local model inference
t.add_computed_column(
   classification=huggingface.vit_for_image_classification(t.image)
)

# Vision analysis
t.add_computed_column(
   description=openai.vision(prompt="Describe this image", image=t.image)
)

Computed Columns · AI Integrations · Sample App: Prompt Studio

Iterate: Explode & Process Media

Create views with iterators to explode one row into many (video→frames, doc→chunks, audio→segments).

# Document chunking with overlap & metadata
chunks = pxt.create_view('chunks', docs,
   iterator=DocumentSplitter.create(
       document=docs.doc,
       separators='sentence,token_limit',
       overlap=50, limit=500
   ))

# Video frame extraction
frames = pxt.create_view('frames', videos,
   iterator=FrameIterator.create(video=videos.video, fps=0.5))

Views · Iterators · RAG Pipeline

Index: Built-in Vector Search

Add embedding indexes and perform similarity searches directly on tables/views.

t.add_embedding_index(
   'img',
   embedding=clip.using(model_id='openai/clip-vit-base-patch32')
)

sim = t.img.similarity(string="cat playing with yarn")
results = t.order_by(sim, asc=False).limit(10).collect()

Embedding Indexes · Semantic Search · Image Search App

Extend: Bring Your Own Code

Extend Pixeltable with UDFs, reusable queries, batch processing, and custom aggregators.

@pxt.udf
def format_prompt(context: list, question: str) -> str:
   return f"Context: {context}\nQuestion: {question}"

@pxt.query
def search_by_topic(topic: str):
   return t.where(t.category == topic).select(t.title, t.summary)

UDFs Guide · Custom Aggregates

Agents & Tools: Tool Calling & MCP Integration

Register @pxt.udf, @pxt.query functions, or MCP servers as callable tools. LLMs decide which tool to invoke; Pixeltable executes and stores results.

# Load tools from MCP server, UDFs, and query functions
mcp_tools = pxt.mcp_udfs('http://localhost:8000/mcp')
tools = pxt.tools(get_weather_udf, search_context_query, *mcp_tools)

# LLM decides which tool to call; Pixeltable executes it
t.add_computed_column(
   tool_output=invoke_tools(tools, t.llm_tool_choice)
)

Tool Calling Cookbook · Agents & MCP · Pixelbot · Pixelagent

Query & Experiment: SQL-like Python Querying

Familiar syntax combined with powerful AI capabilities. Test transformations before committing:

# Query data
results = (
   t.where(t.score > 0.8)
   .order_by(t.timestamp)
   .select(t.image, score=t.score)
   .limit(10)
   .collect()
)

# Test transformation on sample BEFORE adding column
t.select(t.text, summary=summarize(t.text)).head(3)  # Nothing stored
t.add_computed_column(summary=summarize(t.text))      # Now commit

Queries & Expressions · Iterative Development

Version: Data Persistence & Time Travel

All data is automatically stored and versioned. Query any prior version.

t = pxt.get_table('my_table')  # Get a handle to an existing table
t.revert()  # Undo the last modification

t.history()  # Display all prior versions
old_version = pxt.get_table('my_table:472')  # Query a specific version

Version Control · Data Sharing

Import/Export: I/O & Integration

Import from any source and export to ML formats.

# Import from files, URLs, S3, Hugging Face
t.insert(pxt.io.import_csv('data.csv'))
t.insert(pxt.io.import_huggingface_dataset(dataset))

# Export to analytics/ML formats
pxt.io.export_parquet(table, 'data.parquet')
pytorch_ds = table.to_pytorch_dataset('pt')  # → PyTorch DataLoader ready
coco_path = table.to_coco_dataset()          # → COCO annotations

# ML tool integrations
pxt.create_label_studio_project(table, label_config)  # Annotation
pxt.export_images_as_fo_dataset(table, table.image)   # FiftyOne

Data Import · PyTorch Export · Label Studio · Data Wrangling for ML

Tutorials & Cookbooks

Fundamentals Cookbooks Providers Sample Apps
Colab Colab OpenAI Gradio
Colab Colab Anthropic GitHub
Colab Colab Gemini Discord
Colab Colab Ollama Terminal
All → All → All → All →

External Storage and Pixeltable Cloud

Supported storage providers:

S3 GCS Azure R2 B2 Tigris

Store computed media using the destination parameter on columns, or set defaults globally via PIXELTABLE_OUTPUT_MEDIA_DEST and PIXELTABLE_INPUT_MEDIA_DEST. See Configuration.

Data Sharing: Publish datasets to Pixeltable Cloud for team collaboration or public sharing. Replicate public datasets instantly—no account needed for replication.

import pixeltable as pxt

# Replicate a public dataset (no account required)
coco = pxt.replicate(
    remote_uri='pxt://pixeltable:fiftyone/coco_mini_2017',
    local_path='coco-copy'
)

# Publish your own dataset (requires free account)
pxt.publish(source='my-table', destination_uri='pxt://myorg/my-dataset')

# Store computed media in external cloud storage
t.add_computed_column(
    thumbnail=t.image.resize((256, 256)),
    destination='s3://my-bucket/thumbnails/'
)

Data Sharing Guide | Cloud Storage | Public Datasets

Built with Pixeltable

Project Description
Pixelbot Multimodal Infinite Memory AI Agent — a complete E2E AI app powered by Pixeltable
Pixelagent Lightweight agent framework with built-in memory and tool orchestration
Pixelmemory Persistent memory layer for AI applications
MCP Server Model Context Protocol server for Claude, Cursor, and other AI IDEs

Contributing

We love contributions! Whether it's reporting bugs, suggesting features, improving documentation, or submitting code changes, please check out our Contributing Guide and join the Discussions or our Discord Server.

License

Pixeltable is licensed under the Apache 2.0 License.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pixeltable-0.5.16-py3-none-any.whl (616.4 kB view details)

Uploaded Python 3

File details

Details for the file pixeltable-0.5.16-py3-none-any.whl.

File metadata

File hashes

Hashes for pixeltable-0.5.16-py3-none-any.whl
Algorithm Hash digest
SHA256 27f2bd8225636538c17cab6ac5fae67ab4bcbcdd2c05e8e443b035b6e361fa79
MD5 af7763465eb79265edbe2222cb6035ee
BLAKE2b-256 545136561d5856f5d827b9a8bd1527b7c1a3527de001b3fa4655a7cec8b40149

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page