A tool to find the differences between two tables.
Project description
pl_compare: Compare and find the differences between two Polars DataFrames.
- Get statistical summaries and/or examples and/or a boolean to indicate:
- Schema differences
- Row differences
- Value differences
- Easily works for Pandas dataframes and other tabular data formats with conversion using Apache arrow
- View differences as a text report
- Get differences as a Polars LazyFrame or DataFrame
- Use LazyFrames for larger than memory comparisons
- Specify the equality calculation that is used to dermine value differences
Installation
pip install pl_compare
Examples
Return booleans to check for schema, row and value differences
import polars as pl
from pl_compare import compare
base_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "12345678"],
"Example1": [1, 6, 3],
"Example2": ["1", "2", "3"],
}
)
compare_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "1234567810"],
"Example1": [1, 2, 3],
"Example2": [1, 2, 3],
"Example3": [1, 2, 3],
},
)
compare_result = compare(["ID"], base_df, compare_df)
print("is_schema_unequal:", compare_result.is_schema_unequal())
print("is_rows_unequal:", compare_result.is_rows_unequal())
print("is_values_unequal:", compare_result.is_values_unequal())
output:
is_schema_unequal: True
is_rows_unequal: True
is_values_unequal: True
Schema differences summary and details
import olars as pl.
from pl_compare import ceompar
base_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "12345678"],
"Example1": [1, 6, 3],
"Example2": ["1", "2", "3"],
}
)
compare_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "1234567810"],
"Example1": [1, 2, 3],
"Example2": [1, 2, 3],
"Example3": [1, 2, 3],
},
)
compare_result = compare(["ID"], base_df, compare_df)
print("schema_differences_summary()")
print(compare_result.schema_differences_summary())
print("schema_differences_sample()")
print(compare_result.schema_differences_sample())
output:
schema_differences_summary()
shape: (6, 2)
┌─────────────────────────────────┬───────┐
│ Statistic ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════════════════════════════════╪═══════╡
│ Columns in base ┆ 1 │
│ Columns in compare ┆ 1 │
│ Columns in base and compare ┆ 3 │
│ Columns only in base ┆ 0 │
│ Columns only in compare ┆ 1 │
│ Columns with schema differences ┆ 1 │
└─────────────────────────────────┴───────┘
schema_differences_sample()
shape: (2, 3)
┌──────────┬─────────────┬────────────────┐
│ column ┆ base_format ┆ compare_format │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞══════════╪═════════════╪════════════════╡
│ Example2 ┆ Utf8 ┆ Int64 │
│ Example3 ┆ null ┆ Int64 │
└──────────┴─────────────┴────────────────┘
Row differences summary and details
import olars as pl.
from pl_compare import ceompar
base_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "12345678"],
"Example1": [1, 6, 3],
"Example2": ["1", "2", "3"],
}
)
compare_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "1234567810"],
"Example1": [1, 2, 3],
"Example2": [1, 2, 3],
"Example3": [1, 2, 3],
},
)
compare_result = compare(["ID"], base_df, compare_df)
print("row_differences_summary()")
print(compare_result.row_differences_summary())
print("row_differences_sample()")
print(compare_result.row_differences_sample())
output:
row_differences_summary()
shape: (5, 2)
┌──────────────────────────┬───────┐
│ Statistic ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════════════════════════╪═══════╡
│ Rows in base ┆ 3 │
│ Rows in compare ┆ 3 │
│ Rows only in base ┆ 1 │
│ Rows only in compare ┆ 1 │
│ Rows in base and compare ┆ 2 │
└──────────────────────────┴───────┘
row_differences_sample()
shape: (2, 3)
┌────────────┬──────────┬─────────────────┐
│ ID ┆ variable ┆ value │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞════════════╪══════════╪═════════════════╡
│ 12345678 ┆ status ┆ in base only │
│ 1234567810 ┆ status ┆ in compare only │
└────────────┴──────────┴─────────────────┘
Value differences summary and details
import polars as pl
from pl_compare import compare
base_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "12345678"],
"Example1": [1, 6, 3],
"Example2": ["1", "2", "3"],
}
)
compare_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "1234567810"],
"Example1": [1, 2, 3],
"Example2": [1, 2, 3],
"Example3": [1, 2, 3],
},
)
compare_result = compare(["ID"], base_df, compare_df)
print("value_differences_summary()")
print(compare_result.value_differences_summary())
print("value_differences_sample()")
print(compare_result.value_differences_sample())
output:
value_differences_summary()
shape: (1, 2)
┌──────────────────────────────┬───────┐
│ Value Differences for Column ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════════════════════════════╪═══════╡
│ Example1 ┆ 1 │
└──────────────────────────────┴───────┘
value_differences_sample()
shape: (1, 4)
┌─────────┬──────────┬──────┬─────────┐
│ ID ┆ variable ┆ base ┆ compare │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 ┆ i64 │
╞═════════╪══════════╪══════╪═════════╡
│ 1234567 ┆ Example1 ┆ 6 ┆ 2 │
└─────────┴──────────┴──────┴─────────┘
Full report
import polars as pl
from pl_compare import compare
base_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "12345678"],
"Example1": [1, 6, 3],
"Example2": ["1", "2", "3"],
}
)
compare_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "1234567810"],
"Example1": [1, 2, 3],
"Example2": [1, 2, 3],
"Example3": [1, 2, 3],
},
)
compare_result = compare(["ID"], base_df, compare_df)
compare_result.report()
output:
Schema summary:
shape: (6, 2)
┌─────────────────────────────────┬───────┐
│ Statistic ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════════════════════════════════╪═══════╡
│ Columns in base ┆ 3 │
│ Columns in compare ┆ 4 │
│ Columns in base and compare ┆ 3 │
│ Columns only in base ┆ 0 │
│ Columns only in compare ┆ 1 │
│ Columns with schema differences ┆ 1 │
└─────────────────────────────────┴───────┘
Schema differences: True
shape: (2, 3)
┌──────────┬─────────────┬────────────────┐
│ column ┆ base_format ┆ compare_format │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞══════════╪═════════════╪════════════════╡
│ Example2 ┆ Utf8 ┆ Int64 │
│ Example3 ┆ null ┆ Int64 │
└──────────┴─────────────┴────────────────┘
Row summary:
shape: (5, 2)
┌──────────────────────────┬───────┐
│ Statistic ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════════════════════════╪═══════╡
│ Rows in base ┆ 3 │
│ Rows in compare ┆ 3 │
│ Rows only in base ┆ 1 │
│ Rows only in compare ┆ 1 │
│ Rows in base and compare ┆ 2 │
└──────────────────────────┴───────┘
Row differences: True
shape: (2, 3)
┌────────────┬──────────┬─────────────────┐
│ ID ┆ variable ┆ value │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞════════════╪══════════╪═════════════════╡
│ 12345678 ┆ status ┆ in base only │
│ 1234567810 ┆ status ┆ in compare only │
└────────────┴──────────┴─────────────────┘
Value summary:
shape: (1, 2)
┌──────────────────────────────┬───────┐
│ Value Differences for Column ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════════════════════════════╪═══════╡
│ Example1 ┆ 1 │
└──────────────────────────────┴───────┘
Value differences: True
shape: (1, 4)
┌─────────┬──────────┬──────┬─────────┐
│ ID ┆ variable ┆ base ┆ compare │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 ┆ i64 │
╞═════════╪══════════╪══════╪═════════╡
│ 1234567 ┆ Example1 ┆ 6 ┆ 2 │
└─────────┴──────────┴──────┴─────────┘
All differences summary:
shape: (12, 2)
┌─────────────────────────────────┬───────┐
│ Statistic ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════════════════════════════════╪═══════╡
│ Columns in base ┆ 3 │
│ Columns in compare ┆ 4 │
│ Columns in base and compare ┆ 3 │
│ Columns only in base ┆ 0 │
│ Columns only in compare ┆ 1 │
│ Columns with schema differences ┆ 1 │
│ Rows in base ┆ 3 │
│ Rows in compare ┆ 3 │
│ Rows only in base ┆ 1 │
│ Rows only in compare ┆ 1 │
│ Rows in base and compare ┆ 2 │
│ Value diffs Col:Example1 ┆ 1 │
└─────────────────────────────────┴───────┘
Compare two pandas dataframes (you will need to convert to polars frames first)
import polars as pl
import pandas as pd
from pl_compare import compare
base_df = pd.DataFrame(data=
{
"ID": ["123456", "1234567", "12345678"],
"Example1": [1, 6, 3],
"Example2": ["1", "2", "3"],
}
)
compare_df = pd.DataFrame(data=
{
"ID": ["123456", "1234567", "1234567810"],
"Example1": [1, 2, 3],
"Example2": [1, 2, 3],
"Example3": [1, 2, 3],
},
)
compare_result = compare(["ID"], pl.from_pandas(base_df), pl.from_pandas(compare_df))
compare_result.report()
output:
Schema summary:
shape: (6, 2)
┌─────────────────────────────────┬───────┐
│ Statistic ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════════════════════════════════╪═══════╡
│ Columns in base ┆ 3 │
│ Columns in compare ┆ 4 │
│ Columns in base and compare ┆ 3 │
│ Columns only in base ┆ 0 │
│ Columns only in compare ┆ 1 │
│ Columns with schema differences ┆ 1 │
└─────────────────────────────────┴───────┘
Schema differences: True
shape: (2, 3)
┌──────────┬─────────────┬────────────────┐
│ column ┆ base_format ┆ compare_format │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞══════════╪═════════════╪════════════════╡
│ Example2 ┆ Utf8 ┆ Int64 │
│ Example3 ┆ null ┆ Int64 │
└──────────┴─────────────┴────────────────┘
Row summary:
shape: (5, 2)
┌──────────────────────────┬───────┐
│ Statistic ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════════════════════════╪═══════╡
│ Rows in base ┆ 3 │
│ Rows in compare ┆ 3 │
│ Rows only in base ┆ 1 │
│ Rows only in compare ┆ 1 │
│ Rows in base and compare ┆ 2 │
└──────────────────────────┴───────┘
Row differences: True
shape: (2, 3)
┌────────────┬──────────┬─────────────────┐
│ ID ┆ variable ┆ value │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞════════════╪══════════╪═════════════════╡
│ 12345678 ┆ status ┆ in base only │
│ 1234567810 ┆ status ┆ in compare only │
└────────────┴──────────┴─────────────────┘
Value summary:
shape: (1, 2)
┌──────────────────────────────┬───────┐
│ Value Differences for Column ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════════════════════════════╪═══════╡
│ Example1 ┆ 1 │
└──────────────────────────────┴───────┘
Value differences: True
shape: (1, 4)
┌─────────┬──────────┬──────┬─────────┐
│ ID ┆ variable ┆ base ┆ compare │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 ┆ i64 │
╞═════════╪══════════╪══════╪═════════╡
│ 1234567 ┆ Example1 ┆ 6 ┆ 2 │
└─────────┴──────────┴──────┴─────────┘
All differences summary:
shape: (12, 2)
┌─────────────────────────────────┬───────┐
│ Statistic ┆ Count │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════════════════════════════════╪═══════╡
│ Columns in base ┆ 3 │
│ Columns in compare ┆ 4 │
│ Columns in base and compare ┆ 3 │
│ Columns only in base ┆ 0 │
│ Columns only in compare ┆ 1 │
│ Columns with schema differences ┆ 1 │
│ Rows in base ┆ 3 │
│ Rows in compare ┆ 3 │
│ Rows only in base ┆ 1 │
│ Rows only in compare ┆ 1 │
│ Rows in base and compare ┆ 2 │
│ Value diffs Col:Example1 ┆ 1 │
└─────────────────────────────────┴───────┘
Specify a threshold to control the frandularity of hte comparison for numeric columns.
import polars as pl
from pl_compare import compare
base_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "12345678"],
"Example1": [1.111, 6.11, 3.11],
}
)
compare_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "1234567810"],
"Example1": [1.114, 6.14, 3.12],
},
)
def custom_equality_check(col: str, format: pl.DataType) -> pl.Expr:
return (
(pl.col(f"{col}_base") != pl.col(f"{col}_compare"))
| (pl.col(f"{col}_base").is_null() & ~pl.col(f"{col}_compare").is_null())
| (~pl.col(f"{col}_base").is_null() & pl.col(f"{col}_compare").is_null())
)
print("With thrshold of 0.01")
compare_result = compare(["ID"], base_df, compare_df, threshold=0.01)
print(compare_result.value_differences_sample())
print("With no threshold")
compare_result = compare(["ID"], base_df, compare_df)
print(compare_result.value_differences_sample())
output:
With thrshold of 0.01
shape: (1, 4)
┌─────────┬──────────┬──────┬─────────┐
│ ID ┆ variable ┆ base ┆ compare │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 ┆ f64 │
╞═════════╪══════════╪══════╪═════════╡
│ 1234567 ┆ Example1 ┆ 6.11 ┆ 6.14 │
└─────────┴──────────┴──────┴─────────┘
With no threshold
shape: (2, 4)
┌─────────┬──────────┬───────┬─────────┐
│ ID ┆ variable ┆ base ┆ compare │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ f64 ┆ f64 │
╞═════════╪══════════╪═══════╪═════════╡
│ 123456 ┆ Example1 ┆ 1.111 ┆ 1.114 │
│ 1234567 ┆ Example1 ┆ 6.11 ┆ 6.14 │
└─────────┴──────────┴───────┴─────────┘
Example using alias for base and compare dataframes.
import polars as pl
from pl_compare import compare
base_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "12345678"],
"Example1": [1, 6, 3],
"Example2": ["1", "2", "3"],
}
)
compare_df = pl.DataFrame(
{
"ID": ["123456", "1234567", "1234567810"],
"Example1": [1, 2, 3],
"Example2": [1, 2, 3],
"Example3": [1, 2, 3],
},
)
compare_result = compare(["ID"],
base_df,
compare_df,
base_alias="before_change",
compare_alias="after_change")
print("value_differences_summary()")
print(compare_result.schema_differences_sample())
print("value_differences_sample()")
print(compare_result.value_differences_sample())
output:
value_differences_summary()
shape: (2, 3)
┌──────────┬──────────────────────┬─────────────────────┐
│ column ┆ before_change_format ┆ after_change_format │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str │
╞══════════╪══════════════════════╪═════════════════════╡
│ Example2 ┆ Utf8 ┆ Int64 │
│ Example3 ┆ null ┆ Int64 │
└──────────┴──────────────────────┴─────────────────────┘
value_differences_sample()
shape: (1, 4)
┌─────────┬──────────┬───────────────┬──────────────┐
│ ID ┆ variable ┆ before_change ┆ after_change │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 ┆ i64 │
╞═════════╪══════════╪═══════════════╪══════════════╡
│ 1234567 ┆ Example1 ┆ 6 ┆ 2 │
└─────────┴──────────┴───────────────┴──────────────┘
To DO:
- Linting (Ruff)
- Make into python package
- Add makefile for easy linting and tests
- Statistics should indicate which statistics are referencing columns
- Add all statistics frame to tests
- Add schema differences to schema summary
- Make row examples alternate between base only and compare only so that it is more readable.
- Add limit value to the examples.
- Updated value differences summary so that Statistic is something that makes sense.
- Publish package to pypi
- Add difference criterion.
- Add license
- Make package easy to use (i.e. so you only have to import pl_compare and then you can us pl_compare)
- Add table name labels that can replace 'base' and 'compare'.
- [] Write up docstrings
- Write up readme (with code examples)
- [] Add parameter to hide column differences with 0 differences.
- [] Raise error and print examples if duplicates are present.
- [] Add a count of the number of rows that have any differences to the value differences summary.
- [] Add total number of value differences to the value differences summary.
- [] Update report so that non differences are (optionally) not displayed.
- [] Change id_columns to be named 'join_on' and add a test that checks that abritrary join conditions work.
- [] Change 'threshold' to be 'granularity'/'numeric granularity?'
- [] Update code to use a config dataclass that can be passed between the class and functions.
- [] Simplify custom equality checks and add example.
- [] Test for large amounts of data
- [] Benchmark for different sizes of data.
- [] strict MyPy type checking
- [] Github actions for testing
- [] Github actions for linting
- [] Github actions for publishing
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pl_compare-0.1.11.tar.gz
(11.2 kB
view details)
Built Distribution
File details
Details for the file pl_compare-0.1.11.tar.gz
.
File metadata
- Download URL: pl_compare-0.1.11.tar.gz
- Upload date:
- Size: 11.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c12a9dde2664dc48dcb8cc02394131419d48f56a6e879c34d67d4e8441f19b36 |
|
MD5 | 53f9c4b2d50c6d6dd4f5b7c764a12c40 |
|
BLAKE2b-256 | d40486282d6dada9d490a076a93c72ec6938a837d3bd7233f3e1665615fa317d |
File details
Details for the file pl_compare-0.1.11-py3-none-any.whl
.
File metadata
- Download URL: pl_compare-0.1.11-py3-none-any.whl
- Upload date:
- Size: 11.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5cb7cec23fb643f5e1ae55316ce79016ff853035cb46a6e406b33e1a1792aad |
|
MD5 | c23e7a90dffc63ff044476eee607fbec |
|
BLAKE2b-256 | cbfbd763f2685495c21199debb106779fac68a236eaf67af5b7f9e3820d18d1c |