Python Tools for Planetary Science
Project description
PlanetaryPy
PlanetaryPy
Beta release: This will become (part of) the core package of the PlanetaryPy organisation.
Potential logo:
Install
pip install planetarypy
This will pull in these other dependencies and their dependencies:
tomlkit pandas pvl numpy python-dateutil tqdm lxml yarl hirise-tools kalasiris
Suggested standard abbreviations:
- Inside these docs the package will be called
PLPY
for brevity. - A standard Python import could be:
plp
orplpy
- because the last
p
inplp
can be pronounced out, we consider these equivalent for human conversation and pronounce these “plippy”.
- because the last
General scope
First and foremost this package should provide support in working with planetary science data.
With working
we mean:
- locating
- retrieving
- reading
- further processing
of data.
Locating
This library manages, via its PDS tools
, multiple PDS3 index files per
instrument that can be used for identifying data of interest. These
index files are automatically downloaded and converted to the very
performant (and cloud-ready)
parquet
file format. > Parquet is able to store advanced datatypes like
nan-capable integer and full datetime objects, as opposed to HDF5.
Retrieving
The interface to getting data is via a path-retrieving function based on a PDS product-id. If that product-id is available locally, the path will be returned. If it is not, it will previously be downloaded, stored in a systematic fashion organized by mission and instrument, and then the local path will be returned.
Reading
For now, the library only returns the path to the object and the user
needs to sort out the reading process. A recently funded NASA project
Planetary Data Reader
will be integrated here, so that basic reading
into memory can be provided.
As such, we anticipate two classes of reading support: 1. basic reading into numpy and/or xarray 1. added reader functionality like basic plots and basic geospatial processing, as supported by interested parties
There will exist larger other packages that focus on working with a
given instrument’s data, in which case that package could become an
affiliated package with the planetarypy
GitHub organization, if so
desired.
Further processing
In the future, additional frequently used procedures will be added to this library, e.g. * frequently used GDAL/rasterio procedures * frequently used SPICE operations * like surface illumination on a given body
PDS tools
Look at the Apps
docs to see what pds.apps
exist for easily getting
PDS indexes. The find_index
app is specifically useful when you don’t
know what index files exist.
So far, the following indexes are supported (but not necessarily all tested within PLPY):
- Cassini
- ISS (all)
- UVIS (all)
- MRO
- CTX EDR
- HiRISE
- EDR, RDR, DTM
- EDR index has a bug (as delivered by the team, reported), where I need to activate an existing fix for it.
- EDR, RDR, DTM
- LRO
- Diviner (DLRE)
- EDR, RDR
- LOLA
- EDR, RDR
- Diviner (DLRE)
More indexes
More indexes of other instruments can be easily added by following the
existing structure of what has been copied into your config at
~/.planetarypy_config.toml
.
Please consider submitting a pull request for adding further PDS index files into the config file at its source: https://github.com/michaelaye/nbplanetary/blob/master/planetarypy/data/planetarypy_config.toml
Utils
Find something in Utils
for working with NASA timestamps and a well
working URL download function
url_retrieve
,
among other stuff.
Experiment/Instrument Specific
So far, planetarypy
supports CTX EDR and HiRISE RGB.NOMAP data. Look
at the
CTX
and
HiRISE
pages for descriptions of classes for working with these data.
Bug reports
Please submit bug reports at https://github.com/michaelaye/nbplanetary/issues
How to use
Indexes
See PDS apps for more details.
from planetarypy.pds.apps import get_index
ctrindex = get_index("mro.ctx", "edr", refresh=False)
ctrindex.sample(5, random_state=42) # setting random_state to always get same files for docs
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
VOLUME_ID | FILE_SPECIFICATION_NAME | ORIGINAL_PRODUCT_ID | PRODUCT_ID | IMAGE_TIME | INSTRUMENT_ID | INSTRUMENT_MODE_ID | LINE_SAMPLES | LINES | SPATIAL_SUMMING | ... | SUB_SOLAR_LATITUDE | SUB_SPACECRAFT_LONGITUDE | SUB_SPACECRAFT_LATITUDE | SOLAR_DISTANCE | SOLAR_LONGITUDE | LOCAL_TIME | IMAGE_SKEW_ANGLE | RATIONALE_DESC | DATA_QUALITY_DESC | ORBIT_NUMBER | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
86101 | MROX_2757 | DATA/J07_047671_1256_XN_54S338W.IMG | 4A_04_10F0036A00 | J07_047671_1256_XN_54S338W | 2016-09-27 00:24:54.682 | CTX | NIFL | 2528 | 8192 | 1 | ... | -19.41 | 338.09 | -54.43 | 207762612.4 | 230.58 | 15.48 | 90.1 | Crater in Noachis Terra | OK | 47671 |
54420 | MROX_1819 | DATA/D10_031170_1808_XN_00N221W.IMG | 4A_04_109C017D00 | D10_031170_1808_XN_00N221W | 2013-03-21 06:58:09.892 | CTX | NIFL | 5056 | 7168 | 1 | ... | -24.39 | 221.52 | 0.88 | 209925149.5 | 286.15 | 14.49 | 90.1 | Ride-along with HiRISE | OK | 31170 |
71053 | MROX_2331 | DATA/F10_039530_1470_XI_33S203W.IMG | 4A_04_10C9000F00 | F10_039530_1470_XI_33S203W | 2015-01-01 16:20:01.840 | CTX | ITL | 5056 | 52224 | 1 | ... | -25.3 | 203.96 | -33.12 | 207070298.2 | 263.93 | 15.2 | 90.4 | Terrain in Terra Cimmeria | OK | 39530 |
51385 | MROX_1742 | DATA/D04_028919_2026_XN_22N327W.IMG | 4A_04_109002A800 | D04_028919_2026_XN_22N327W | 2012-09-26 21:17:00.483 | CTX | NIFL | 5056 | 6144 | 1 | ... | 0.67 | 327.06 | 22.78 | 219814412.3 | 178.44 | 15.53 | 90.1 | Ride-along with HiRISE | OK | 28919 |
51923 | MROX_1757 | DATA/D05_029283_1524_XN_27S180W.IMG | 4A_04_1092020B00 | D05_029283_1524_XN_27S180W | 2012-10-25 05:44:21.786 | CTX | NIFL | 5056 | 9216 | 1 | ... | -6.28 | 178.36 | -27.56 | 214830233.7 | 194.72 | 15.57 | 90.1 | Ride-along with HiRISE | OK | 29283 |
5 rows × 51 columns
hirise_rdr = get_index("mro.hirise", "rdr")
hirise_rdr.sample(5, random_state=42)
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
VOLUME_ID | FILE_NAME_SPECIFICATION | INSTRUMENT_HOST_ID | INSTRUMENT_ID | OBSERVATION_ID | PRODUCT_ID | PRODUCT_VERSION_ID | TARGET_NAME | ORBIT_NUMBER | MISSION_PHASE_NAME | ... | LINE_PROJECTION_OFFSET | SAMPLE_PROJECTION_OFFSET | CORNER1_LATITUDE | CORNER1_LONGITUDE | CORNER2_LATITUDE | CORNER2_LONGITUDE | CORNER3_LATITUDE | CORNER3_LONGITUDE | CORNER4_LATITUDE | CORNER4_LONGITUDE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
144822 | MROHR_0001 | RDR/ESP/ORB_074100_074199/ESP_074107_1410/ESP_... | MRO | HIRISE | ESP_074107_1410 | ESP_074107_1410_COLOR | 1 | MARS | 74107 | Extended Science Phase | ... | -4568562.5 | 2009279.5 | -38.7446 | 159.311 | -38.7465 | 159.287 | -38.614 | 159.269 | -38.6121 | 159.293 |
22518 | MROHR_0001 | RDR/ESP/ORB_014000_014099/ESP_014080_1040/ESP_... | MRO | HIRISE | ESP_014080_1040 | ESP_014080_1040_RED | 1 | MARS | 14080 | Extended Science Phase | ... | -3193960.0 | -845180.0 | -76.0185 | 165.215 | -76.0315 | 164.858 | -75.6958 | 164.658 | -75.6831 | 165.005 |
86634 | MROHR_0001 | RDR/ESP/ORB_046300_046399/ESP_046395_1730/ESP_... | MRO | HIRISE | ESP_046395_1730 | ESP_046395_1730_COLOR | 1 | MARS | 46395 | Extended Science Phase | ... | -1584330.0 | -26573400.0 | -6.9957 | 292.569 | -6.9979 | 292.551 | -6.6838 | 292.51 | -6.6815 | 292.529 |
138163 | MROHR_0001 | RDR/ESP/ORB_069100_069199/ESP_069178_2345/ESP_... | MRO | HIRISE | ESP_069178_2345 | ESP_069178_2345_RED | 1 | MARS | 69178 | Extended Science Phase | ... | 12762196.0 | 15708938.0 | 53.8598 | 76.7591 | 53.8474 | 76.602 | 54.0013 | 76.5672 | 54.0137 | 76.7249 |
125490 | MROHR_0001 | RDR/ESP/ORB_063500_063599/ESP_063504_1995/ESP_... | MRO | HIRISE | ESP_063504_1995 | ESP_063504_1995_COLOR | 1 | MARS | 63504 | Extended Science Phase | ... | 4638178.5 | 12794202.0 | 19.4523 | 124.149 | 19.45 | 124.128 | 19.5686 | 124.113 | 19.5709 | 124.133 |
5 rows × 54 columns
Instrument tools
CTX
from planetarypy.ctx import CTX
pid = ctrindex.sample(random_state=42).squeeze().PRODUCT_ID
pid
'J07_047671_1256_XN_54S338W'
ctx = CTX(pid)
ctx
PRODUCT_ID: J07_047671_1256_XN_54S338W
URL: https://pds-imaging.jpl.nasa.gov/data/mro/mars_reconnaissance_orbiter/ctx/mrox_2757/data/J07_047671_1256_XN_54S338W.IMG
source_path: /remote/trove/geo/planet/Mars/CTX/pds/mrox_2757/J07_047671_1256_XN_54S338W.IMG
Shape: (8192, 2528)
ctx.source_path
Path('/remote/trove/geo/planet/Mars/CTX/pds/mrox_2757/J07_047671_1256_XN_54S338W.IMG')
ctx.download()
File exists. Use `overwrite=True` to download fresh.
Acknowledgements
The creation of this library was in part supported by:
- NASA Cassini UVIS mission
- NASA SSW grant NNX15AH36G
- NASA PDART grant 80NSSC20K0875
- NASA SSW grant 80NSSC20K0748
- German Space Agency (DLR Bonn), grant 50 OO 2204, on behalf of the German Federal Ministry for Economic Affairs and Climate Action.
- This research has made use of the USGS Integrated Software for Imagers and Spectrometers (ISIS)(Laura et al. 2022).
Laura, Jason, Alex Acosta, Travis Addair, Lauren Adoram-Kershner, James Alexander, Oleg Alexandrov, Stacey Alley, et al. 2022. Integrated Software for Imagers and Spectrometers (version 7.2.0_RC1). Zenodo. https://doi.org/10.5281/zenodo.7443567.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file planetarypy-0.32.1.tar.gz
.
File metadata
- Download URL: planetarypy-0.32.1.tar.gz
- Upload date:
- Size: 68.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc085233144e6a5180e276da9f105ab59f1417c3a014d69bfd7e4db952bce2f6 |
|
MD5 | 27286655b1e14ace3511344483a88c09 |
|
BLAKE2b-256 | 4d6e0f5c2792c4d547a9d8bfd2f74d925badd6ee39fe59f5f231a0a4b718fc56 |
File details
Details for the file planetarypy-0.32.1-py3-none-any.whl
.
File metadata
- Download URL: planetarypy-0.32.1-py3-none-any.whl
- Upload date:
- Size: 69.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ddcac8bac98e04bd928932c3d946f255664492c2ccaca72d2e098bc5cf4a3231 |
|
MD5 | 4839a1332a6fab680d0e3ed66928791a |
|
BLAKE2b-256 | 068cc84eba125d8dde80f87f3d18daf717b76b20848e4b67b4e4e8107e8c3c03 |