Skip to main content

Plan observations with the Zwicky Transient Facility

Project description

planobs

Toolset for planning and triggering observations with ZTF. GCN parsing is currently only implemented for IceCube alerts.

It checks if the object is observable with a maximum airmass on a given date, plots the airmass vs. time, computes two optimal (minimal airmass at night) observations of 300s in g- and r and generate the ZTF field plots for all fields having a reference. There is also the option to create a longer (multiday) observation plan.

CI Coverage Status PyPI version DOI

Requirements

ztfquery for checking if fields have a reference.

planobs requires at least Python 3.8

Installation

Using Pip: pip install planobs.

Otherwise, you can clone the repository: git clone https://github.com/simeonreusch/planobs, followed by poetry install This also gives you access to the Slackbot.

General usage

from planobs.plan import PlanObservation

name = "testalert" # Name of the alert object
date = "2020-05-05" #This is optional, defaults to today
ra = 133.7
dec = 13.37

plan = PlanObservation(name=name, date=date, ra=ra, dec=dec)
plan.plot_target() # Plots the observing conditions
plan.request_ztf_fields() # Checks in which ZTF fields this 
# object is observable and generates plots for them.

The observation plot and the ZTF field plots will be located in the current directory/[name]

Note: Checking if fields have references requires ztfquery, which needs IPAC credentials.

Usage for IceCube alerts

from planobs.plan import PlanObservation

name = "IC201007A" # Name of the alert object
date = "2020-10-08" #This is optional, defaults to today

# No RA and Dec values are given, because we set alertsource to icecube, which leads to automatic GCN parsing.

plan = PlanObservation(name=name, date=date, alertsource="icecube")
plan.plot_target() # Plots the observing conditions.
plan.request_ztf_fields() # Checks which ZTF fields cover the target (and have references).
print(plan.recommended_field) # This give you the field with the most overlap.

Triggering ZTF

planobs can be used to schedule ToO observations with ZTF. This is done through API calls to the Kowalski system, managed by the Kowalski Python API penquins.

To use this functionality, you must first configure the connection details. You need both an API token, and to know the address of the Kowalski host address. You can then set these as environment variables:

export KOWALSKI_HOST=something
export KOWALSKI_API_TOKEN=somethingelse

You can then import the Queue class for querying, submitting and deleting ToO triggers:

Querying

from planobs.api import Queue

q = Queue(user="yourname")

existing_too_requests = get_too_queues(names_only=True)
print(existing_too_requests)

Submitting

from planobs.api import Queue

trigger_name = "ToO_IC220513A_test"

# Instantiate the API connection
q = Queue(user="yourname")

# Add a trigger to the internal submission queue. Filter ID is 1 for r-, 2 for g- and 3 for i-band. Exposure time is given in seconds.
q.add_trigger_to_queue(
    trigger_name=trigger_name,
    validity_window_start_mjd=59719.309333333334,
    field_id=427,
    filter_id=1,
    exposure_time=300,
)

q.submit_queue()

# Now we verify that our trigger has been successfully submitted
existing_too_requests = get_too_queues(names_only=True)
print(existing_too_requests)
assert trigger_name in existing_too_requests

Deleting

from planobs.api import Queue

q = Queue(user="yourname")

trigger_name = "ToO_IC220513A_test"

res = q.delete_trigger(trigger_name=trigger_name)

Citing the code

If you use this code, please cite it! A DOI is provided by Zenodo, which can reference both the code repository and specific releases:

DOI

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

planobs-0.5.4.tar.gz (17.9 MB view details)

Uploaded Source

Built Distribution

planobs-0.5.4-py3-none-any.whl (18.5 MB view details)

Uploaded Python 3

File details

Details for the file planobs-0.5.4.tar.gz.

File metadata

  • Download URL: planobs-0.5.4.tar.gz
  • Upload date:
  • Size: 17.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.8 Linux/5.15.0-1022-azure

File hashes

Hashes for planobs-0.5.4.tar.gz
Algorithm Hash digest
SHA256 4053ad0e6c5dd2553dded63045608902692cb52ca6c15be98815a9e8b4f839f4
MD5 61954989056fe739c50ba5810efb8dde
BLAKE2b-256 191740d8c667610a44bb88d010a1b993eeba2be8cd76a58bded9b8c67b861698

See more details on using hashes here.

File details

Details for the file planobs-0.5.4-py3-none-any.whl.

File metadata

  • Download URL: planobs-0.5.4-py3-none-any.whl
  • Upload date:
  • Size: 18.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.8 Linux/5.15.0-1022-azure

File hashes

Hashes for planobs-0.5.4-py3-none-any.whl
Algorithm Hash digest
SHA256 24f263fbaa3833842f758fa7861f114eff812f42152bb5814dca9f1bb114fb2b
MD5 93da5d60c1e64d8ae3537ed13055d2b6
BLAKE2b-256 55a4fc28b6ecc85b463896aef2f657e52e77767540c719a7402a03056fb9c1f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page