Read license plates
Project description
platerec
platerec
is a lightweight package for reading license plates using an ONNX model. It is designed to be part of a pipeline for detecting, cropping, and reading license plates. The underlying model is a mobilenetv2 as encoder and a light gpt for decoder. The training data comprises primarily Brazilian license plates, sourced from internet images, also synthetic data generated in the same font with transforms. The model repository can be found here.
Installation
To install the required dependencies, use the following command:
For cpu
pip install "platerec[cpu]"
For cuda 11.X
pip install "platerec[gpu]"
For cuda 12.X
pip install "platerec[gpu]" --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
Usage
Command Line Interface
You can use the command line interface to detect license plates in an image:
platerec image_path [--encoder_path ENCODER_PATH] [--decoder_path DECODER_PATH] [--return_types RETURN_TYPE] [--providers PROVIDERS] [--platedet]
Arguments
image_path
: Path to the input image. Could be more than one image.--encoder_path
: Path to the ONNX encoder model (default:artifacts/encoder.onnx
).--decoder_path
: Path to the ONNX decoder model (default:artifacts/decoder.onnx
).--return_type
: Output formats (choices:word
,char
). Word return the plate text and confidence detected, char return the plate chars detected with confidences for each char.--providers
: ONNX Runtime providers (default:CPUExecutionProvider
).--platedet
: Use platedet to detect plates first. Will first detect plates and then read them.
Example
To just read an already cropped image:
python3 platerec/cli.py examples/1.jpg --return_type word
To detect license plates and read them:
python3 platerec/cli.py examples/1.jpg --return_type word --platedet
Using in Code
To just read an already cropped image:
from PIL import Image
from platerec import Platerec
platerec = Platerec()
image = Image.open('examples/1.jpg')
pred = platerec.read(image)
pred will be something like:
{'word': 'ZZZ1Z11', 'confidence': 0.98828125}
To detect license plates and read them:
from PIL import Image
from platerec import Platerec
platerec = Platerec()
image = Image.open('examples/1.jpg')
crops = platerec.detect_read(image)
for idx, crop in enumerate(crops['pil']['images']):
crop.save(f'{idx}.jpg')
pred will be something like:
{'images': [<PIL.Image.Image image mode=RGB size=105x40 at 0x7FEE25B67AD0>], 'confidences': array([0.72949219]), 'words': ['AAA1A11'], 'boxes': array([[ 393, 1188, 498, 1228]], dtype=int32), 'words_confidences': [0.95263671875]}
If you want to use CUDA:
from platerec import Platerec
platerec = Platerec(providers=["CUDAExecutionProvider"])
Check all execution providers here.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file platerec-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: platerec-0.0.2-py3-none-any.whl
- Upload date:
- Size: 8.4 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e1c5c7752fd4e1236543cdd2a8a9b4ff6df820c9f38009531e58de3f06d3b96 |
|
MD5 | ff07d7472a6309e7c99d7f83cbb120ed |
|
BLAKE2b-256 | 758e906adedd3c02b9b770b5006366c848b6b3f5c6d49e9a5f9378a9048ca9ba |