Skip to main content

PLD accountant

Project description


Python code for computing exact DP-guarantees for the subsampled Gaussian mechanism.

The method is described in:

Antti Koskela, Joonas Jälkö, Antti Honkela:
Computing Exact Guarantees for Differential Privacy


You can download a PyPI package

pip3 install pld-accountant

and run, for example,

from pld_accountant import compute_eps,compute_delta

nc=1000 #number of compositions


a  = compute_eps.get_epsilon_bounded(q=q,sigma=sigma,target_delta=delta,ncomp=nc)


d  = compute_delta.get_delta_bounded(q=q,sigma=sigma,target_eps=eps,ncomp=nc)

Project details

Release history Release notifications

This version


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pld-accountant, version 0.11
Filename, size & hash File type Python version Upload date
pld_accountant-0.11-py3-none-any.whl (10.2 kB) View hashes Wheel py3
pld_accountant-0.11.tar.gz (4.6 kB) View hashes Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page