Skip to main content

PLD accountant

Project description

PLD-Accountant

Python code for computing exact DP-guarantees for the subsampled Gaussian mechanism.

The method is described in:

Antti Koskela, Joonas Jälkö, Antti Honkela:
Computing Exact Guarantees for Differential Privacy
https://arxiv.org/abs/1906.03049

Usage

You can download a PyPI package

pip3 install pld-accountant

and run, for example,

from pld_accountant import compute_eps,compute_delta

q=0.01
sigma=1.2
nc=1000 #number of compositions

delta=1e-5

a  = compute_eps.get_epsilon_bounded(q=q,sigma=sigma,target_delta=delta,ncomp=nc)

eps=2.0

d  = compute_delta.get_delta_bounded(q=q,sigma=sigma,target_eps=eps,ncomp=nc)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pld-accountant, version 0.12.0
Filename, size File type Python version Upload date Hashes
Filename, size pld_accountant-0.12.0-py3-none-any.whl (21.4 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size pld_accountant-0.12.0.tar.gz (8.3 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page