Skip to main content

PlncPRO (Plant Long Non-Coding rna Prediction by Random fOrests) is a program to classify coding (mRNAs) and long non-coding transcripts (lncRNAs).

Project description

Build Status PyPI - Python Version PyPI - Downloads

                      _____  _            _____  _____   ____  
                     |  __ \| |          |  __ \|  __ \ / __ \ 
                     | |__) | |_ __   ___| |__) | |__) | |  | |
                     |  ___/| | '_ \ / __|  ___/|  _  /| |  | |
                     | |    | | | | | (__| |    | | \ \| |__| |
                     |_|    |_|_| |_|\___|_|    |_|  \_\\____/ 

INTRODUCTION

PlncPRO (Plant Long Non-Coding rna Prediction by Random fOrests) is a program to classify coding (mRNAs) and long non-coding transcripts (lncRNAs). Our method is based on random forest method and uses protein homology search, sequence based and 3-mer frequency based features. We have developed predictive models for several plant species to predict lncRNAs. We comprehensively tested our method on plants and vertebrates and found that our model works better as compared to the existing tools.

Citation

Singh et. al. PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea. Nucleic Acids Res. 2017 Dec 15;45(22):e183. doi: 10.1093/nar/gkx866.

NOTE: We have updated PlncPro for python3. PlncPro for python2 is also available at http://ccbb.jnu.ac.in/plncpro/. Usage for this newer version is different from the older versions.

INSTALLATION

Pre-requisite:

  1. OS: Linux, macOS
  2. Python 3.5 or later versions (http://www.python.org/)
  3. NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi)
  4. GNU C Library (glibc >= 2.14)

python dependencies

  1. NumPy (http://www.numpy.org/)
  2. SciPy (https://www.scipy.org/)
  3. Scikit-learn (http://scikit-learn.org/)
  4. Biopython (http://biopython.org/)
  5. regex

Using PIP

pip install plncpro

From source

git clone https://github.com/urmi-21/PLncPRO.git
pip install PlncPro

Run tests

bash tests/local_test.sh

Basic Usage

See examples for detailed usage examples.

plncpro predict

Label lncRNAs and mRNAs. This file reads an input file containing sequences and then classifies the sequences as coding or non-coding. It uses a model generated by build.py to make classifications. It outputs a file containing class label and class probabilities for each sequence.

plncpro predict -i <input fasta> -o <output_dir> -p <output_file_name> -t 2 -d <blast_db> -m <model_file>

PARAMETERS

-p,--prediction_out	output file name
-i,--infile		file containing input sequences
-m,--model		model file
-o,--outdir		output directory name
-d,--db			path to blast database
		OPTIONAL
-t,--threads		number of threads [default: 4]
-l,--labels		path to the files containg labels(it outputs classification accuracy)
-r,--remove_temp	clean up intermediate files
-v,--verbose		show more messages
--min_len		specifiy min_length to filter input files
--noblast		Don't use blast features
-no_ff			Don't use framefinder features
--qcov_hsp		specify query coverage parameter for blast[default:30]
--blastres*		path to blast output for input file
*blast result should be in following format: -outfmt '6 qseqid sseqid pident evalue qcovs qcovhsp score bitscore qframe sframe'

plncpro build

Build model using the given training data (mRNA/lncRNA transcripts). This file reads two labelled datasets containing coding and non-coding transcripts. Then it makes a random forest based classification model and saves the model, which can be used to predict unknown sequences.

plncpro build -p <mrna fasta> -n <lncrna fasta> -o <out_dir> -m <model_name> -d <blast db> -t <threads>

PARAMETERS

-p,--pos		file containing mRNA sequences
-n,--neg		file containing lncRNA sequences
-m,--model		output model name
-o,--outdir		output directory name
-d			path to blast database
		OPTIONAL
-t,--threads		number of threads [default: 4]
-k,--num_trees		number of trees[default: 1000]
-r,--remove_temp	clean up intermediate files
-v,--verbose		show more messages	
--min_len		specifiy min_length to filter input files
--noblast		Don't use blast features
--no_ff			Don't use framefinder features
--qcov_hsp		specify query cov parameter for blast[default:30]
--pos_blastres*		path to blast result for mRNA input file
--neg_blastres*		path to blast result for lncRNA input file

*blast result should be in following format: -outfmt '6 qseqid sseqid pident evalue qcovs qcovhsp score bitscore qframe sframe' 

plncpro predtoseq

Extract mRNA or lncRNA sequences from PLNCPRO output file. This file reads a prediction output file and extracts sequences from a given class. User can specify class and probability cut-off and extract desired transcript sequences.

plncpro predtoseq -f <fasta_file> -o <outputfile> -p <PLNCPRO_prediction_file> -l <required_label>

PARAMETERS

-f			input fasta file name
-o			output fasta file name	
-p			path to file containg predictions by PLNCPRO
		OPTIONAL
-l			label of the required sequences (0 for lncRNA;1 for mRNA) [default:0]
-s			class probability cutoff (extract sequences with probability greater than or equal to s
--min			specifiy min_length of sequences[default:0]
--max			specifiy min_length of sequences[default:Inf]

Download data used in paper

Data is hosted on google drive. Direct link

Directly download using wget.

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=108S-9Bt4CLCHTaCn6-HKTqQZDo0nssZe' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=108S-9Bt4CLCHTaCn6-HKTqQZDo0nssZe" -O plncpro_data.zip && rm -rf /tmp/cookies.txt

COPYING

GNU Public License version 3 (GPLv3) Details on http://www.gnu.org/copyleft/gpl.html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plncpro-1.2.2.tar.gz (175.6 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page