A package with tools for plotting metrics
Project description
plot_metric
|PyPI-Versions| |doc_badge|
Librairie to simplify plotting of metric like ROC curve, confusion matrix etc..
Installation
Using pip :
.. code:: sh
pip install plot-metric
Example BinaryClassification
Simple binary classification
Let's load a simple dataset and make a train & test set :
.. code:: python
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
X, y = make_classification(n_samples=1000, n_classes=2, weights=[1,1], random_state=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=2)
Train our classifier and predict our test set :
.. code:: python
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=50, random_state=23)
model = clf.fit(X_train, y_train)
# Use predict_proba to predict probability of the class
y_pred = clf.predict_proba(X_test)[:,1]
We can now use ``plot_metric`` to plot ROC Curve, distribution class and classification matrix :
.. code:: python
# Visualisation with plot_metric
bc = BinaryClassification(y_test, y_pred, labels=["Class 1", "Class 2"])
# Figures
plt.figure(figsize=(15,10))
plt.subplot2grid(shape=(2,6), loc=(0,0), colspan=2)
bc.plot_roc_curve()
plt.subplot2grid((2,6), (0,2), colspan=2)
bc.plot_precision_recall_curve()
plt.subplot2grid((2,6), (0,4), colspan=2)
bc.plot_class_distribution()
plt.subplot2grid((2,6), (1,1), colspan=2)
bc.plot_confusion_matrix()
plt.subplot2grid((2,6), (1,3), colspan=2)
bc.plot_confusion_matrix(normalize=True)
plt.show()
bc.print_report()
>>> ________________________
>>> | Classification Report |
>>> ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
>>> precision recall f1-score support
>>> 0 1.00 0.93 0.96 43
>>> 1 0.96 1.00 0.98 71
>>> micro avg 0.97 0.97 0.97 114
>>> macro avg 0.98 0.97 0.97 114
>>> weighted avg 0.97 0.97 0.97 114
.. image:: example/images/example_binary_classification.png
Custom parameters
~~~~~~~~~~~~~~~~~
It is possible to customize a lot of figures parameters. You can find all parameters with documentation on the official package documentation : https://plot-metric.readthedocs.io/en/latest/
Or you can retrieve a python dictionnary with all available parameters with the following :
.. code:: python
# Use the function get_function_parameters(function) to get parameters
bc.get_function_parameters(bc.plot_roc_curve)
>>> {'threshold': None,
'plot_threshold': True,
'beta': 1,
'linewidth': 2,
'fscore_iso': [0.2, 0.4, 0.6, 0.8],
'iso_alpha': 0.7,
'y_text_margin': 0.03,
'x_text_margin': 0.2,
'c_pr_curve': 'black',
'c_mean_prec': 'red',
'c_thresh': 'black',
'c_f1_iso': 'grey',
'c_thresh_point': 'red',
'ls_pr_curve': '-',
'ls_mean_prec': '--',
'ls_thresh': ':',
'ls_fscore_iso': ':',
'marker_pr_curve': None}
From a custom dictionnary you can set all parameters you want and plot a figures :
.. code:: python
# Example custom param using dictionnary
param_pr_plot = {
'c_pr_curve':'blue',
'c_mean_prec':'cyan',
'c_thresh_lines':'red',
'c_f1_iso':'green',
'beta': 2,
}
plt.figure(figsize=(6,6))
bc.plot_precision_recall_curve(**param_pr_plot)
plt.show()
.. image:: example/images/example_binary_class_PRCurve_custom.png
.. |PyPI-Versions| image:: https://img.shields.io/badge/plot__metric-v0.0.4-blue.svg
:target: https://pypi.org/project/plot-metric/
.. |doc_badge| image:: https://readthedocs.org/projects/plot-metric/badge/?version=latest
:target: https://plot-metric.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file plot_metric-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: plot_metric-0.0.6-py3-none-any.whl
- Upload date:
- Size: 13.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.30.0 CPython/2.7.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a4441e0990fbbb77889930640250b5a25991c086acf4f594208b0e0f84b5de4d |
|
MD5 | 5873379da2f67a568352996decf996e5 |
|
BLAKE2b-256 | 952adae5d81116c8226c7fdbd711460ea568ac87420cd447cf219524695646c2 |