Skip to main content

A package with tools for plotting metrics

Project description

plot_metric

|PyPI-Versions| |doc_badge|

Librairie to simplify plotting of metric like ROC curve, confusion matrix etc..

Installation

Using pip :

.. code:: sh

pip install plot-metric

Example BinaryClassification

Simple binary classification


Let's load a simple dataset and make a train & test set :

.. code:: python

    from sklearn.datasets import make_classification
    from sklearn.model_selection import train_test_split

    X, y = make_classification(n_samples=1000, n_classes=2, weights=[1,1], random_state=1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=2)


Train our classifier and predict our test set :

.. code:: python

    from sklearn.ensemble import RandomForestClassifier

    clf = RandomForestClassifier(n_estimators=50, random_state=23)
    model = clf.fit(X_train, y_train)

    # Use predict_proba to predict probability of the class
    y_pred = clf.predict_proba(X_test)[:,1]


We can now use ``plot_metric`` to plot ROC Curve, distribution class and classification matrix :

.. code:: python

    # Visualisation with plot_metric
    bc = BinaryClassification(y_test, y_pred, labels=["Class 1", "Class 2"])

    # Figures
    plt.figure(figsize=(15,10))
    plt.subplot2grid(shape=(2,6), loc=(0,0), colspan=2)
    bc.plot_roc_curve()
    plt.subplot2grid((2,6), (0,2), colspan=2)
    bc.plot_precision_recall_curve()
    plt.subplot2grid((2,6), (0,4), colspan=2)
    bc.plot_class_distribution()
    plt.subplot2grid((2,6), (1,1), colspan=2)
    bc.plot_confusion_matrix()
    plt.subplot2grid((2,6), (1,3), colspan=2)
    bc.plot_confusion_matrix(normalize=True)
    plt.show()
    bc.print_report()

    >>>                    ________________________
    >>>                   |  Classification Report |
    >>>                    ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
    >>>               precision    recall  f1-score   support
    >>>            0       1.00      0.93      0.96        43
    >>>            1       0.96      1.00      0.98        71
    >>>    micro avg       0.97      0.97      0.97       114
    >>>    macro avg       0.98      0.97      0.97       114
    >>> weighted avg       0.97      0.97      0.97       114


.. image:: example/images/example_binary_classification.png

Custom parameters
~~~~~~~~~~~~~~~~~

It is possible to customize a lot of figures parameters. You can find all parameters with documentation on the official package documentation : https://plot-metric.readthedocs.io/en/latest/
Or you can retrieve a python dictionnary with all available parameters with the following :

.. code:: python

    # Use the function get_function_parameters(function) to get parameters
    bc.get_function_parameters(bc.plot_roc_curve)

    >>> {'threshold': None,
        'plot_threshold': True,
        'beta': 1,
        'linewidth': 2,
        'fscore_iso': [0.2, 0.4, 0.6, 0.8],
        'iso_alpha': 0.7,
        'y_text_margin': 0.03,
        'x_text_margin': 0.2,
        'c_pr_curve': 'black',
        'c_mean_prec': 'red',
        'c_thresh': 'black',
        'c_f1_iso': 'grey',
        'c_thresh_point': 'red',
        'ls_pr_curve': '-',
        'ls_mean_prec': '--',
        'ls_thresh': ':',
        'ls_fscore_iso': ':',
        'marker_pr_curve': None}

From a custom dictionnary you can set all parameters you want and plot a figures :

.. code:: python

    # Example custom param using dictionnary
    param_pr_plot = {
        'c_pr_curve':'blue',
        'c_mean_prec':'cyan',
        'c_thresh_lines':'red',
        'c_f1_iso':'green',
        'beta': 2,
    }

    plt.figure(figsize=(6,6))
    bc.plot_precision_recall_curve(**param_pr_plot)
    plt.show()

.. image:: example/images/example_binary_class_PRCurve_custom.png

.. |PyPI-Versions| image:: https://img.shields.io/badge/plot__metric-v0.0.4-blue.svg
    :target: https://pypi.org/project/plot-metric/

.. |doc_badge| image:: https://readthedocs.org/projects/plot-metric/badge/?version=latest
    :target: https://plot-metric.readthedocs.io/en/latest/?badge=latest
    :alt: Documentation Status


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

plot_metric-0.0.6-py3-none-any.whl (13.9 kB view details)

Uploaded Python 3

File details

Details for the file plot_metric-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: plot_metric-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 13.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.30.0 CPython/2.7.15

File hashes

Hashes for plot_metric-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 a4441e0990fbbb77889930640250b5a25991c086acf4f594208b0e0f84b5de4d
MD5 5873379da2f67a568352996decf996e5
BLAKE2b-256 952adae5d81116c8226c7fdbd711460ea568ac87420cd447cf219524695646c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page