Skip to main content

A package with tools for plotting metrics

Project description

plot_metric

|PyPI-Versions|

Librairie to simplify plotting of metric like ROC curve, confusion matrix etc..

Installation

Using pip :

.. code:: sh

pip install plot-metric

Example

Let's load a simple dataset and make a train & test set :

.. code:: python

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import pandas as pd

X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(pd.DataFrame(X), y, test_size=0.2, random_state=42)

Train our classifier and predict our test set :

.. code:: python

from sklearn.naive_bayes import GaussianNB

gnb = GaussianNB()
model = gnb.fit(X_train, y_train)
# Use predict_proba to predict probability of the class
y_pred = gnb.predict_proba(X_test)[:,1]

We can now use plot_metric to plot ROC Curve, distribution class and classification matrix :

.. code:: python

from plot_metric.functions import  BinaryClassification
import matplotlib.pyplot as plt
bc = BinaryClassification(y_test, y_pred, labels=[0, 1])

plt.figure(figsize=(10,9))
plt.subplot(141)
bc.plot_roc()
plt.subplot(142)
bc.plot_class_distribution()
plt.subplot(143)
bc.plot_confusion_matrix()
plt.subplot(144)
bc.plot_confusion_matrix(normalize=True)
plt.show()
bc.print_report()

>>>                    ________________________
>>>                   |  Classification Report |
>>>                    ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
>>>               precision    recall  f1-score   support
>>>            0       1.00      0.93      0.96        43
>>>            1       0.96      1.00      0.98        71
>>>    micro avg       0.97      0.97      0.97       114
>>>    macro avg       0.98      0.97      0.97       114
>>> weighted avg       0.97      0.97      0.97       114

.. image:: example/images/example_binary_classification.png

.. |PyPI-Versions| image:: https://img.shields.io/badge/plot__metric-v0.0.2-blue.svg :target: https://pypi.org/project/plot-metric/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

plot_metric-0.0.2-py3-none-any.whl (5.0 kB view details)

Uploaded Python 3

File details

Details for the file plot_metric-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: plot_metric-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 5.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for plot_metric-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 157d82aac7c6db2f581ef3006871e7efd3feda1ded5ffb1e1036cd296d75e703
MD5 e13feb8abc5c0a35326c6c70cd2ada27
BLAKE2b-256 5255e306c91a8952364515c4010dd9e9969b6b3528d383e5186b1d76eacdcf05

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page